Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки структура и биологические функции

    При расшифровке третичной структуры белков решающую роль сыграл рентгенографический метод, который в 1957 г. позволил английскому исследователю Кендрью впервые определить третичную структуру миоглобина. В дальнейшем рентгеноструктурный анализ позволил установить пространственное строение многих других белков и связать его с их биологической функцией. Так, молекула лизоцима — фермента, расщепляющего полисахариды — имеет трехмерную структуру, показанную на рис. 67. Стрелкой показана впадина, представляющая собой активный центр фермента сюда подходит молекула полисахарида, подвергающегося расщеплению. [c.642]


    Проявление белками разнообразных биологических функций основывается на высокоспецифичном (комплементарном) взаимодействии белка с другими биомолекулами. Для этого белкам необходима достаточно жесткая пространственная структура, небольшие изменения которой зачастую приводят к потере или резкому изменению биохимической активности белков. Поэтому знание молекулярной трехмерной структуры белка необходимо для понимания функционирования белковой молекулы в целом. [c.54]

    Генетически кодируется только первичная структура белка. Однако биологические функции определяются его пространственным строением. Первичная структура и пространственное строение однозначно связаны (см. 4.9). Тем самым, генетически закодированы пространственное строение и биологическая функция белка. В то же время естественный отбор идет не по первичной, а по пространственной структуре — по биологическому поведению. [c.589]

    В синтезе полипептидов возникают серьезные стереохимические проблемы. Природные белки состоят из -аминокислот, рацемизация хиральных центров оказывает глубокое влияние иа структуру и биологическую активность. Различия в стереохимии вносят значительные изменения Б пространственную структуру полипептидной цепи, которая необходима для реализации биологической функции полипептида. [c.414]

    Пиримидиновые и пуриновые основания являются элементарными кирпичиками, из которых строятся важнейшие после белков и целлюлозы биополимеры — нуклеиновые кислоты, те живые печатные станки (матрицы), на которых формируются белки в живой клетке, точно повторяющие аминокислотную последовательность белка кавдого живого индивида (подробнее о биологической роли нуклеиновых кислот, их структуре и функциях будет сказано в последнем разделе)  [c.707]

    Поэтому способность белка выполнять биологические функции является лучшим критерием образования его нативной структуры. [c.253]

    Книга, принадлежащая перу лауреата Нобелевской премии Дж. Уотсона, занимает особое место в литературе по молекулярной биологии. Она является превосходным руководством в этой новой, бурно развивающейся области биологии и суммирует самые современные данные. Рассмотрены принципы хромосомной теории наследственности, взаимодействия биологически активных молекул, структура и механизмы функционирования нуклеиновых кислот, их роль в биосинтезе белка, структура и функция мембран, роль различных регуляторов обмена веществ, вирусная теория рака, вопросы и задачи генной инженерии. Книга написана исключительно четко, логично и читается с большим интересом. [c.271]


    Мы ограничимся изложением известных в настоящее время данных о структуре и биологической функции наиболее важных соединений — белков, нуклеиновых кислот, жиров и углеводов, а также сообщим некоторые сведения о путях синтеза белка в организме. [c.435]

    В главе Белки наряду с подробным изложением физико-химических свойств, методов анализа и разделения цитируются также новые работы по определению первичной структуры и конформации белков. После этого следует описание некоторых важных представителей белков, причем за основу классификации их выбрана биологическая функция. [c.7]

    Первичная структура белков уникальна и детерминирована генетически. Каждый индивидуальный гомогенный белок характеризуется уникальной последовательностью аминокислот частота замены аминокислот приводит не только к структурным перестройкам, но и к изменениям физико-химических свойств и биологических функций. [c.59]

    Принцип построения белков определен генетическим материалом клетки. Информация, содержащаяся в ДНК, определяет число и последовательность аминокислот в образующейся в процессе биосинтеза полипептидной цепи. После отделения от рибосомы спонтанно образуется структура, необходимая для выполнения определенной биологической функции. Установление этой биологически активной белковой структуры необходимо для понимания процессов жизнедеятельности, протекающих на молекулярном уровне. [c.341]

    Этот аспект изучения взаимодействий между липидами и белками мало затрагивался в сфере технологии. Важное значение этих взаимодействий для структуры и функции клеточных мембран и плазматических липопротеинов послужило стимулом многочисленных исследовательских работ на модельных системах. Эти работы позволили приобрести хорошие общие знания о молекулярных ассоциациях. Таким образом, здесь приводятся последние сведения о видах взаимодействий между липидами и белками, полученные в результате модельных исследований. Большинство биологических систем находится в водных средах, и во многих технологических процессах вода наиболее часто используется в качестве растворителя. Кроме того, вследствие особой структуры липидов белки больше взаимодействуют с липидными фазами, чем с изолированными молекулами. Здесь будут показаны структура липидных фаз в гидратированной сре- [c.306]

    В книге, написанной авторами из ФРГ, изложены современные представления о принципах, определяющих формирование-пространственной структуры белков, причем вопрос о структурной организации этих важных биополимеров рассматривается а неразрывной связи с их биологическими функциями. [c.4]

    Глобины — это мономерные или олигомерные гемсодержащие белки. Они встречаются в разнообразных организмах, в том числе в бобах, насекомых и человеке [145]. Представители семейства глобинов участвуют в транспорте О2, в фиксации азота клубнями корней бобовых растений, регулировке наполнения плавательного пузыря некоторых видов рыб и в других биологических функциях 1549, 550]. Были изучены трехмерные структуры большого числа [c.219]

    Свою биологическую функцию белки выполняют, только если сохраняются вторичная и третичная структуры. Разрушение третичной и вторичной структур называется денатурацией белка. При денатурации сохраняется только первичная структура белка, т. е. пептидная цепь. Денатурация белков мох<ет произойти под действием химических веществ (кислот, щелочей, спиртов, ацетона), при нагревании, повышепии давления, радио-акгнвном облучении. [c.449]

    Распознавание, ответ и регуляция — аспекты биологических функций белковых структур в клетке. Хотя клетка мышцы высоко, специализирована, тем не менее она проявляет большинство черт, типичных для живых систем (табл. 11.1). Так, она обладает способностью к деятельности и к контролю своей деятельности 1687]. Сигнал, попадающий в эту систему (нервный импульс), вызывает мощный ответ (движение или напряженность), который строго контролируется во времени, пространстве и по своей интенсивности и который координируется с функционально родственными системами, например с процессами, поставляющими химическую энергию. В этом отношении функции этих белков подпадают под категории клеточной биологии распознавание (с какими молекулами взаимодействует белок ), отклик (как белок реагирует на раздражение или сигнал ) и регуляция (как контролируется активность белка или какой процесс осуществляет этот контроль ). Однако все эти выражения описывают различные стороны структуры белка, и, следовательно, между ними нельзя провести четкой границы. [c.284]

    Было высказано предположение, что экзоны кодируют определенные автономные элементы укладки полипептидной. цепи, представляющие собой функциональные сегменты белковой молекулы, которые сортируются в процессе эволюции. Если процессы такой перетасовки генетического материала, механизмы которых не рассматриваются, идут по районам интронов, то структура экзонов не изменяется и, следовательно, не нарушаются функциональные свойства отдельных белковых доменов. Экзоны могут соответствовать участкам доменов или отдельным белковым доменам, т. е. тем участкам белковой молекулы, которые можно выделить как пространственно делимые структуры, обладающие определенной биологической функцией. Установление раз.меров экзонов во многих генах показало, что главный класс экзонов имеет раз.меры около 140 п. и., что соответствует 40—50 а. о. в молекуле белка. Большая часть белковых доменов, содержащих в среднем 100—130 а. о., складывается из нескольких элементов вторичной структуры ( су-первторичных структурных единиц), кодируемых отдельными экзонами. М-терминальный участок из нескольких гидрофобных аминокислот (сигнальный пептид) секреторных белков, как правило, также кодируется отдельным экзоном. [c.192]


    Рассмотренные выше белки расположены таким образом, чтобы продемонстрировать различные аспекты структуры и функции. Эта классификация в известной степени произвольна. Так, читатель может принять во внимание, что гемоглобин и мышечные белки могут рассматриваться в разделе белок-белковых взаимодействий, тропонин С —как белок, связывающий ион металла, а миозин — как белок, претерпевающий посттрансляционное метилирование. Белки можно изучать в нескольких аспектах, включая биосинтез, структуру, взаимодействия и биологическую роль. Любая попытка их классификации будет, по-видимому, лишь частично успешной, однако она дает возможность выдвинуть на передний край сходства и различия. Рассмотренные белки охватывают очень широкую область, вследствие чего описания являются вынужденно краткими. Рекомендуем читателю обратиться к цитированным обзорам. [c.579]

    Природный каучук (и =1500—2200). Бесконечное разнообразие геометрических форм полимерных молекул (белков, нуклеиновых кислот, полисахаридов и т. д.) лежит в основе многообразия структурных форм живых организмов, животных и растительных, и способствует проявлению всевозможных биологических функций этих организмов. Одни полимеры, такие, как каучук, полимеры волос и шерсти — фиброин, коллаген и другие, имеют регулярную структуру  [c.42]

    Белки благодаря многообразию, сложности своих структур и особым свойствам, перечисленным выше, определяют все биологические процессы и биологические функции организмов. Белки имеют несколько уровней структур, которые строятся на самой простой — первичной структуре. Первичная структура — это молекулярная структура белка, которая определяется числом и порядком расположения в макромолекуле различных аминокислот. Ниже приведено расположение аминокислотных остатков на некотором участке миоглобина (гемсодержащего белка мышц, который связывает атмосферный кислород и сохраняет его) Val — Leu — Ser - Glu — Gly — Gly — Trp — Glu —Leu — Val — Leu — His — Val —Trp — Ala — Lys — Val — Ala — Asp — Val — Ala — Gly — His — Gly — Glu — Asp — Heu — Leu [c.721]

    Ряд данных свидетельствует о вырожденности обеих корреляций. Белки с разной первичной структурой могут иметь сходное пространственное строение, сходные или различные биологические функции. Это было показано, в частности, для глобинов — белков, содержащих группы гема, запасающих и переносящих молекулярный кислород. Первичные структуры глобинов значительно разнятся, но их пространственное строение весьма сходно — глобины, среди которых имеются миоглобины позвоночных [c.110]

    Существуют две группы данных, которые с очевидностью свидетельствуют о том, что полипептидные цепи глобулярных белков плотно свернуты и что такая конформация важна для вьшолнения этими белками их биологических функций. Первая группа данных касается денатурации нативньк глобулярных белков, происходящей при их нагревании, воздействии экстремальными значениями pH или при обработке их мочевиной (разд. 6.12). В процессе денатурации структура ковалентного остова глобулярного белка остается неповрежденной, но полипептидная цепь развертывается и принимает беспорядочную, нерегулярную и подверженную изменениям пространственную конформацию. Денатурированный глобулярный белок, как правило, становится нерастворимым в водных системах при pH около 7 и обычно утрачивает свою биологическую активность. [c.187]

    В настоящее время уте определена структура десятков биологически важных пептидов и белков, являющихся гормонами, ферментами, антибиотиками и ядами. Накопленные данные позволяют ставить вопрос о выяснении химических закономерностей в белковых структурах и связи строения белка с биологической функцией, выполняемой им в организ- [c.87]

    Огромные успехи исследований механизмов кодирования наследственной информации и биосинтеза белка, ферментативного катализа и регулирования активности ферментов, действия антибиотиков и гормонов, всей той области изучения живого, которую принято называть молекулярной биологией, приучили всех к мысли о том, что в структурах молекул жизни положение буквально каждого атома строго обусловлено и подчинено выполнению предназначенных для этих молекул биологических функций. Именно в атом смысле принято обычно говорить о специфичности биополимеров, прочно ассоциировавшейся в сознании исследователей с однозначным соответствием между структурой и выполняемой функцией. При таком комплексе стр>т<турного детерминизма трудно было освоиться с представлением о специфичности полисахаридов, для многих из которых характерна статистичность структур, микрогетерогенность и, нередко, хаотичность распределения различных моносахаридных остатков по цепи. И, тем не менее, накапливающийся материал по сложному и высоко специализированному функционированию углевод ных полимеров в живых системах убеждает в том, что и в этой области возможен и необходим перевод функций- нальных свойств биополимеров на язык молекулярных структур, т. е. применим основной принцип молекулярной) [c.162]

    Обычно флавиновые коферменты прочно связаны с белками и совершают обороты между восстановленным и окисленным состояниями, оставаясь прикрепленными к одной и той же молекуле белка. Что определяет восстановительный потенциал флавина в таком флавопро-теиде Окислительно-восстановительный потенциал свободного кофермента зависит от структур окисленной и восстановленной форм соответствующей пары. Молекулы как рибофлавина, так и пиридиннуклеотидов содержат ароматические кольцевые системы, которые стабилизируются резонансом. При восстановлении этот резонанс частично (но не полностью) утрачивается. Величина Е° зависит от степени резонанс-ности окисленной и восстановленной форм и от любых факторов, предпочтительно стабилизирующих одну из этих форм. Структуры этих коферментов приспособлены к тому, чтобы обеспечить значения Е°, оптимальные для осуществления биологических функций. [c.256]

    Нековапентные семисинтезы основаны на том факте, что различные белки после расщепления на фрагменты и их разделения прн рекомбинации образуют биологически активные нековалентные комплексы. Классический пример — рибонуклеаза А из поджелудочной железы быка (рис. 3-24), которая расщепляется бактериальной протеазой субтилизином на так называемые 5-пептид (1—20) и 5-белок (21—124), а после рекомбинации разделенных продуктов расщепления показывает полную ферментативную активность. Для рекомбинации с нативным 5-белком использовались аналоги 5-пептида, синтезированные химически, при этом были получены ценные данные по связи между структурой и функцией. [c.218]

    Обобщая, остается сказать, что конформация остова белковой молекулы вносят решающую долю в формирование конформации глобулярного белка. Однако с помошью нековалентных взаимодействий (гидрос обные, диполь-дипольные взаимодействия, ионные связи, дисперсионные силы) осуществляется образование стабильной трехмерной структуры белка, имеющей исключительное значение для биологической функции глобулярного белка. [c.383]

    Таким образом, можно утверждать, что специфика живой материи обусловлена белками, которые свои особые качества обретают в процессе самопроизвольного перехода полипептидной цепи от состояния флуктуирующего статистического клубка к нативной трехмерной структуре, в каждом случае уникальной по биологической функции Именно спонтанное образование фиксированной активной пространственной формы молекулы белка, а не сама форма, есть изначальная причина фундаментальных особенностей живой материи С чисто физической точки зрения этот уникальный акт творения живого заключается в спонтанной трансформации тепловой энергии необратимых флуктуаций в целенап равленную механическую работу создания высокоорганизованной системы Белки представляются почти единственными в природе (по меньшей мере самыми совершенными и распространенными) автоматическими молекулярными преобразователями энергии хаотического теплового дви- [c.56]

    Выбранный для первого в научной практике априорного расчета белковой трехмерной структуры объект, безусловно, должен быть низкомолекулярным, однодоменным, состоять из одной полипептидной цепи и являться прямым продуктом биосинтеза. Далее, его нативная конформация должна включать систему дисульфидных связей, поскольку в настоящее время эти связи служат, если и не единственным, то, во всяком случае, самым надежным источником информации о структуре промежуточных метастабильных состояний. Кроме того, для выяснения принципов пространственной организации белков существенный интерес представляют количественные оценки основных факторов стабилизации двух сравнительно часто встречающихся регулярных форм пептидной цепи - а-спирали и -структуры. Поэтому желательно, чтобы пространственная структура выбранного для расчета белка содержала наряду с неупорядоченными участками также вторичные, регулярные структуры обоих видов. Понимание структурной организации белковых молекул не является конечной целью, а необходимо для последующего изучения их биологического действия, т.е. решения проблемы структурно-функцио-нальной организации белков. Поэтому важно, чтобы белок, выбранный в качестве простейшего для изучения его структурной организации, оказался бы и удачным модельным объектом для установления принципов взаимосвязи между структурой и функцией. Он должен обладать простой и хорошо изученной экспериментально функцией. [c.427]

    В учебнике нашли отражение современные представления о структуре и функциях молекул белков, нуклеиновых кислот, углеводов и липидов. Разделы по химии биополимеров, как и ферментов, витаминов и гормонов, объединены по просьбе большинства рецензентов в первой части учебника. В главах, посвященных витаминам, гормонам и ферментам, представлены новые сведения о биологической роли и механизме действия этих соединений. Опущены данные о первичной структуре ряда пептидных и белковых гормонов, зато приведены новейшие результаты по биогенезу простаглан-динов и родственных соединений простациклинов, тромбоксанов и лейко-триенов. В главе Ферменты подробно рассмотрены проблемы медицинской энзимологии, включая некоторые вопросы инженерной энзимологии. [c.11]

    Анализ структуры белка является первым этапом в исследованиях механизма его действия и в конечном счете его биологической функции. В настоящее время наиболее хорошо изучены функции гемоглобина и химотрипсина. Высокая скорость и эффективность катализа химотрипсина (и других ферментов) можно приписать многим эффектам, ускоряющим химические реакции в модельных системах. Ктаким эффектам относятся ориентация субстрата(ов) в актив- [c.291]

    Анализ последовательностей РНК важен с различных позиций. К настоящему моменту уже определены последовательности более 100 видов тРНК [34], Выяснение последовательности дрожжевой тРНК в сочетании с данными рентгеноструктурного анализа было важным как для определения пространственной структуры этой молекулы (см. рис. 22.1,6 и 22.1,7 в гл. 22.1), так и для подтверждения правильности определения структуры белков. Однако, возникающая возможность изучения взаимосвязи между структурой нуклеиновых кислот и их биологической функцией является даже более важной перспективой. Детальное знание механизмов транскрипции и трансляции во многом зависит от наличия информации о последовательностях разных видов РНК. Простым примером является получение молекул тРНК из их предшественников [c.194]

    Классическая биохимия изучала главным образом жизненно важные процессы в организмах растений и животных с участием органических соединений — белков, углеводов, жиров, нуклеиновых кислот, витаминов, гормонов и др. Она практически не касалась вопросов о воздействии на эти молекулы (и на их биологические функции) многообразных неорганических соединений, поступающих в организм с питательными веществами или другим путем. Сегодня стало очевидным, что в живых организмах присутствуют соединения всех элементов периодической системы, которые в ничтожных, некоторые — минигомеопатических количествах, изначально присутствовали в живых организмах с момента зарождения жизни на Земле, так как попадали тем или иным путем в водоемы, воздух и на луга, а оттуда в организмы животных и растений. В настоящее время, когда техническая деятельность человека и разрущение земных покровов приняло порой неразумные и даже катастрофические размеры, в окружающую среду попадают уже не гомеопатические, а макрогомеопатические количества соединений всех элементов периодической системы, которые, безусловно, оказывают сильнейшее воздействие на жизнь. Поскольку остановить все более стремительное развитие техники и разрушение данной от природы структуры Земли, водных покровов и воздушного океана невозможно в силу того, что это есть следствие развития естественных потребностей человека, крайне необходимо изучать и знать, как состав окружающей среды взаимодействует с биологическими структурами человека, животных и растений и какие непредсказуемые последствия может вызвать. [c.182]

    Дальнейшее развитие биологии и медицины почти невозможно без применения методологических принципов современной биологической химии. Установление способов хранения и передачи генетической информации и принципов структурной организации белков и нуклеиновых кислот, расшифровка механизмов биосинтеза этих полимерных молекул, а также молекулярных механизмов трансформации энергии в живых системах, установление роли биомембран и субклеточных структур, несомненно, способствуют более глубокому проникновению в сокровенные тайны жизни и выяснению связи между структурой индивидуальных химических компонентов живой материи и их биологическими функциями. Овладение этими закономерностями и основополагающими принципами биологической химии не только способствует формированию у будущего врача диалектикоматериалистического понимания процессов жизни, но и дает ему новые, ранее недоступные возможности активного вмешательства в патологические процессы. Этими обстоятельствами диктуется необходимость изучения биологической химии студентами медицинских институтов. [c.9]

    РНК (см. главу 3) и 2130 белковых субъединиц, масса каждой из которых составляет 17500. Длина вируса примерно 300 нм, ширина—около 17 нм. РНК вируса имеет спиралеобразную форму. Вокруг РНК нанизаны белковые частицы, образующие гигантскую надмолекулярную спиральную структуру, в которой насчитывается около 130 витков (рис. 1.26). Удивительной особенностью вируса является то, что после разъединения соответствующими приемами (добавление детергента) РНК и белковых субъединиц и последующего их смешивания (с предварительным удалением детергента) наблюдаются полная регенерация четвертичной структуры, восстановление всех физических параметров и биологических функций (инфектив-ная способность вируса). Подобная точность процесса спонтанной самосборки вируса обеспечивается, вероятнее всего, информацией, содержащейся в первичной структуре молекулы РНК и белковых субъединиц. Таким образом, последовательность аминокислот содержит в себе информацию, которая реализуется на всех уровнях структурной организации белков. [c.70]


Смотреть страницы где упоминается термин Белки структура и биологические функции: [c.179]    [c.181]    [c.147]    [c.8]    [c.527]    [c.267]    [c.560]    [c.748]    [c.10]    [c.48]    [c.74]    [c.78]    [c.88]    [c.96]    [c.110]   
Возможности химии сегодня и завтра (1992) -- [ c.116 , c.172 , c.173 ]




ПОИСК





Смотрите так же термины и статьи:

Белки функции

Белок белки структура

Структура белка



© 2025 chem21.info Реклама на сайте