Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структуры диссипативные

    Пространственно-временная самоорганизация гетерогенного каталитического процесса. Одновременное протекание химической реакции и диффузии может привести к образованию периодических по пространству стационарных состояний — диссипативных структур [84—89]. Покажем возможность образования неоднородных стационарных состояний (макрокластеров) на примере механизма реакции окисления оксида углерода на платиновом катализаторе. Математическую модель поверхностной каталитической реакции с учетом поверхностной диффузии будем строить, исходя из следующих предположений [83]. Будем считать, что диффузия адсорбированного вещества X происходит за счет его перескока на соседние свободные места Z. Схема расположения занятых мест X и свободных мест Z на поверхности катализатора показана на рис. 7.10 (для наглядности взят одномерный случай). Пусть X, г — степени покрытия X та X соответственно, ро — вероятность перескока молекул с занятого места на свободное (микроскопическая константа), е — характерный размер решетки. Тогда скорость изменения г] = Ах М степени покрытия X в сечении [c.306]


    Неустойчивости, обычно возникающие за точками бифуркации, обязаны своим появлением термодинамическим флюктуациям, которые могут быть причиной вывода системы из равновесия. Возможен с.тучай, когда неустойчивость приводит к появлению нового состояния системы, которое стабилизируется во времени и пространстве. Такое состояние означает, по существу, образование новой так называемой диссипативной структуры, характеризующейся согласованным поведением системы. Термин диссипативные структуры специально введем для того, чтобы подчеркнуть отличие от равновесных структур. Диссипативные структуры являются поразительным примером, демонстрирующим способность неравновесности служить источником упорядоченности. Механизм образования диссипативных структур следует четко отличать от механизма формирования равновесных структур, основанного на больцмановском принципе упорядоченности. Поддержание стабилизированной во времени и пространстве физико-химической структуры с определенным типом изменения концентрации реагентов достигается за счет непрерывного обмена с окружающей средой энергией и веществом, что является прямым следствием образования диссипативных структур в открытых системах и тем самым отличает их от равновесных структур (например, кристаллов). [c.281]

    Структура диссипативной функции многокомпонентной многофазной смеси, где протекают химические реакции и процессы тепло- и массопереноса [c.54]

    Анализ структуры диссипативной функции позволил научно обосновать структуру универсальной движущей силы процесса сушки, учитывающей концентрационную, скоростную и температурную неравновесности между газом и высушиваемой частицей. [c.148]

    Здесь необходимо учитывать и возможность возникновения в нефтяных системах диссипативных структур. Диссипативные структуры обозначают возникновение локального упорядоченного состояния в открытых системах при большом отклонении от равновесия. Они связаны с понятиями локального термодинамического равновесия и устойчивости неравновесной макроскопической системы. Рост диссипации со временем может обеспечить значительную устойчивость неравновесной системы. В это же время, очевидно, система становится более упорядоченной и симметричной. [c.188]

    С точки зрения проблемы самоорганизации, т. е. образования диссипативных структур и автоволновых процессов, важным является вопрос об устойчивости зе и существования кроме х периодических по пространству стационарных решений задачи (7.7)— [c.307]

    Сложность структуры связей потоков и движущих сил определяется конкретным типом системы. Так, для изотропных систем при малых отклонениях от равновесия справедливы линейные кинетические соотношения между независимыми потоками и движущими силами одинаковой тензорной размерности (принцип Кюри), а структура прямых и перекрестных связей между ними для эффектов данной тензорной размерности определяется соотношениями взаимности или симметрии (принцип Онзагера). Для систем более сложного вида (например, системы с анизотропией или с большими отклонениями от равновесия) кинетические соотношения становятся существенно нелинейными и вместе с тем резко усложняется структура связей между диссипативными потоками и движущими силами различной физико-химической природы. Однако, как бы ни был высок уровень сложности ФХС, понятия диссипативных потоков и движущих сил остаются исходными категориями при описании физико-химических явлений, относящихся к надмолекулярным уровням иерархии ФХС. В этом смысле специфика химико-технологических процессов, как [c.6]


    Диссипативные структуры и процессы самоорганизации в мембранах..............34 [c.3]

    ДИССИПАТИВНЫЕ СТРУКТУРЫ И ПРОЦЕССЫ САМООРГАНИЗАЦИИ В МЕМБРАНАХ [c.34]

    Такой методологический подход будет развит на основе энергетической концепции движущих сил и потоков, определяющих структуру обобщенной диссипативной функции ФХС, которая учитывает энергозатраты в системе на протекание необратимых нроцессов всех видов [23—25]. Как уже упоминалось, этим вопросам будет посвящена вторая книга по системному анализу процессов химической технологии ( Топологический принцип формализации ). [c.17]

    Формально результат воздействия обратной связи на ход каталитического процеса в математических моделях автоколебаний учитывается различными путями. В основу гетерогенно-каталитических моделей обычно полагается механизм Лэнгмюра—Хиншельвуда с учетом формального отражения а) зависимости констант скорости отдельных стадий реакции от степеней покрытия адсорбированными реагентами [93—98] б) конкуренции стадий адсорбции реагирующих веществ [99—103] в) изменения во времени поверхностной концентрации неактивной примеси или буфера [104—107] г) участия в стадии взаимодействия двух свободных мест [108] д) циклических взаимных переходов механизмов реакции [109], фазовой структуры поверхности [110] е) перегрева тонкого слоя поверхностности катализатора [100] ж) островко-вой адсорбции с образованием диссипативных структур [111, 112]. К этому следует добавить модели с учетом разветвленных поверхностных [113] гетерогенно-гомогенных цепных реакций [114, 115], а также ряд моделей, принимающих во внимание динамическое поведение реактора идеального смешения [116], процессы внешне-[117] и внутридиффузионного тепло-и массопереноса I118—120] и поверхностной диффузии реагентов [121], которые в определенных условиях могут приводить к автоколебаниям скорости реакции. [c.315]

    Исходный принцип системного подхода к анализу отдельного процесса химической технологии состоит в том, что объект исследования рассматривается как сложная кибернетическая система, так называемая физико-химическая система (ФХС). Основу любой ФХС составляют явления переноса субстанций — массы, энергии, импульса, момента импульса, заряда. Механизм этого переноса, его внутренние причинно-следственные отношения проявляются во взаимосвязи диссипативных потоков и движущих сил ФХС. Как показано в первой книге авторов по системному анализу, для широкого класса ФХС характерна многоуровневая структура взаимосвязей физико-химических эффектов при весьма сложной и разветвленной сети прямых и обратных связей между ними. Различные виды неравновесности ФХС порождают движущие силы, которые приводят к появлению соответствующих потоков субстанций потоки субстанций влияют на степень удаления системы от химического, теплового, механического и энергетического равновесия, что, в свою очередь, опять сказывается на движущих силах [1]. [c.6]

    В-поля. По определению диссипативное К-поле — это и-связ-ная топологическая структура, определяющее соотношение ко- [c.83]

    Первый шаг детализации кодовой диаграммы (2.29) состоит в конкретизации структуры Д, т. е. в учете диссипации химической энергии по мере приближения системы к состоянию химического равновесия. Наличие четырех потоков в диаграмме (2.29) требует для отражения эффекта диссипации использования четырехсвязного диссипативного К-поля, одновременно отражающего степень удаления системы от равновесия. Это значит, что исходная кодовая диаграмма (2.29) допускает детализацию вида [c.120]

    Кроме того, при построении полной диаграммы связи необходимо учесть, что она содержит N диссипативных пар типа 1 — К , входящих в правую часть структуры (2.35). Пример полной диаграммы связи совокупности сопряженных химических реакций приведен на рис. 2.1, а [3]. [c.123]

    Диаграммы связи химических реакций с учетом диссипативных эффектов. Выше были рассмотрены методы топологического описания химических реакций без учета других термодинамических характеристик системы (температуры, давления, энтропии), изменяющихся в процессе химического превращения. Учет термодинамических параметров позволяет полнее представить в диаграммном виде структуру явлений, происходящих в физико-хи- [c.125]

    Ниже будут изложены некоторые приемы построения диаграмм связи химических реакций с учетом диссипативных эффектов и эффектов взаимодействия системы с окружающей средой. Топологическое описание будем строить в несколько этапов с постепенной детализацией и уточнением ее структуры [4]. [c.126]

    В терминах диаграмм связи поток механической энергии с учетом условий равновесия может быть представлен комбинацией 1-структуры с диссипативным К-элементом [c.147]

    Как и в предыдущих случаях, диаграммное отражение этих условий равновесия сводится к комбинации 1-структуры с диссипативным В-элементом [c.149]


    Общей /-переменной на 1-структуре является плотность потока к-то компонента, пересекающего поверхность раздела фаз А(12) [кмоль/м с]. Диссипативный R-элемент отражает диссипацию энергии Oft = / г(12)Аи- с, затрачиваемую при фазовом переходе компонента. Соответствующая R-зависимость представляет линейную связь между потоком и движущей силой Дцк в [c.149]

    В терминах диаграмм связи это взаимодействие потоков компонентов можно отобразить 0-структурой с диссипативным К-элементом, выражающим диссипацию энергии в системе за счет [c.159]

    При турбулентном движении вязкой жидкости ее кинетическая энергия вследствие вязкого трения преобразуется в тепло. Поэтому турбулентный поток вязкой жидкости является диссипативным, и для его поддержания необходим постоянный подвод энергии извне. В противном случае турбулентность вырождается. С другой стороны, влияние вязкости как бы усредняет турбулентность по объему, делает ее более однородной. В предельном случае, когда структура турбулентности во всех точках исследуемого объема количественно одинакова, она называется однородной. [c.176]

    Для исследованных моделей нефти, имеющих особую граничную упругость, наблюдается зависимость тангенса угла механических потерь (tp ф) от толщины пленки с уменьшением толщины слоя тангенс уменьшается. Из рис. 60 видно, что при приближе-иии к твердой фазе тангенс угла механических потерь быстро уменьшается и в области /хгр его значения остаются более или менее постоянными. Причем с увеличением концентрации асфальтенов при прочих равных условиях значение уменьшается, что свидетельствует об уменьшении диссипативных потерь вследствие упорядоченности структуры под влиянием твердой поверхности. Весьма низкое значение tg ф, равное приблизительно 0,2, связано с тем, что асфальтены имеют довольно крупные молекулы [139], а это приводит к резкому увеличению вязкости нефти в граничном слое. [c.118]

    Нестационарные режимы функционирования в сочетании с нелинейными характеристиками процессов вдали от равновесия приводят к качественно новым сложным формам поведения контактно-каталитических систем — хаотическим колебаниям, образованию диссипативных структур, явлениям самоорганизации сложных систем вдали от равновесия. Обнаружение этих новых форм поведения контактно-каталитических процессов открывает путь к научно-обоснованным методам создания кибернетически организованных контактно-каталитических процессов с заранее заданными статическими и динамическими свойствами. [c.18]

    Присутствие катализатора К не меняет точку равновесия реакпии, а изменяет скорость достижения этого равновесия. Как упоминалось, в присутствии катализатора сопротивление реакции шунтируется параллельным контуром с малым сопротивлением реакции. В данном случае диссипация химической энергии по мере приближения к состоянию химического равновесия учитывается многосвязным диссипативным Л-иолем. Прп этом па связях Д-поля возникает одпнаковая потоковая переменная и происходит накопление промежуточного активированного комплекса (АК). Такое распределение силовых е-переменных и потоковых /-переменных характерно для слияющих структур типа 1- и 0-узлов, и это позволяет перейти от Я-псля к эквивалентному диаграммному комплексу, состоящему из 1- и 0-узлов и односвязных диссипативных Л-элементов (рис. 5.9). Здесь элементы ТВ и Гд отражают конкретный механизм межфазного переноса, элемент 5 с нижним индексом компонента символизирует источник (сток) этого компс-нента, один верхний штрих обозначает жидкую фазу, два штриха — газовую. [c.228]

    Пространственно-временные диссипативные структуры типа бегущей волны возникают в связи с образованием предельного цикла, когда концентрации компонентов системы не только колеблются во времени, но и одновременно изменяют свои координаты в пространстве. Такая система допускает волнообразное движение, при котором локальные колебания не организуются для образования стоячей волны, а принимают участие в общем продвижении волновых фронтов. Диссипативная структура в этом случае реализуется по типу бегущей волны во времени и пространстве. Система может обладать несколькими стационарными состояниями, которые соответствуют одному и тому же значению параметра. Типичный пример такой ситуации показан на рис. 7.1, на котором кривая зависимости / (X, а) =0 стационарных значений концентраций X (а) от параметра а имеет три стационарных точки при одном фиксированном значении параметра ц. Если, например, а = о, то а, с — устойчивы, а Ь — неустойчивое состояние. Тогда части кривой АВ и ОС представляют собой ветви устойчивых, а ВС — ветвь неустойчивых стационарных состояний. При достижении бифуркационных значений параметра (а, а") происходят скачкообразнью переходы С А и ВО в экстремальных точках В 11 С кривой f (X, а) = О так что неустойчивые состояния на участке ВС практически никогда не реализуются в действительности. Таким образом, реализуется замкнутый гис-терезисный цикл АВОСА, в котором в результате изменения параметра система проходит ряд стационарных состояний, отличающихся друг от друга при одних и тех же значениях а в зависимости от направления движения. Системы, обладающие способностью функционировать в одном из двух устойчивых стационарных состояний, принято называть триггерными. Последние работают по принципу все или ничего , переключаясь из одного устойчивого режима в другой в результате изменения управляющего параметра а. [c.282]

    Анализ показывает, что сосредоточенная система (7.9), отвечающая механизму (М), имеет в широком интервале температур Т и давлений р , р три стационарных состояния < х < (два устойчивых — х 2 , х и одно неустойчивое — х ) [83]. При этом наряду с однородными х , xf , xf существуют и периодические решения, которые и представляют собой диссипативные структуры. Для рассматриваемой задачи существует предельный случай, когда периодическое решение вырождается в одиночную волну. Это решение соответствует тому, что на поверхности катализатора реализуется одно из устойчивых однородных стационарных состояний, а в некоторой конечной области состояние приближается к другому устойчивому однородному стационарному состоянию (не достигая его). Эта неоднородность и может быть интерпретирована как макрокластер на новерхности катализатора, нанример пятно СО на Og либо, наоборот, пятно 0 на СО. [c.308]

    Оптамнзация промышленного процесса получения формальдегида окяс-.1ите.1ьным дегидрированием метанола на серебряном катализаторе с учетом самоорганизации [86]. Процесс самоорганизации, рассматриваемый на уровне химико-технологической системы, состоит в проявлении кооперативного действия мод и упорядочения, определяемого параметрами порядка [86], при этом образуются диссипативные структуры. Устойчивые состояния соответствуют некоторым точкам в фазовом пространстве координат системы (технологические режимы, конструктивные характеристики аппаратов). Эти состояния будем называть центрами самоорганизации. [c.312]

    В реакционно-диффузионных мембранах, где возникают, мигрируют и распадаются промежуточные химические соединения, массоперенос описывается системой нелинейных дифференциальных уравнений, решение которых неоднозначно и сильно зависит от степени неравновесностн системы при этом в результате сопряжения диффузии и химической реакции возможно возникновение новых потоков массы, усиливающих или ослабляющих проницаемость и селективность мембраны по целевому компоненту. При определенных пороговых значениях неравно-весности, в так называемых точках бифуркации, возможна потеря устойчивости системы, развитие диссипативных структур, обладающих элементами самоорганизации. Это характерно для биологических природных мембран, а также для синтезированных полимерных мембранных систем, моделирующих процессы метаболизма [1—4]. [c.16]

    Как простые, так и сложные К-поля, односвязные К-элементы которых характеризуются положительными параметрами, являются диссипативными, т. е. рассеивающими энергию. Поэтому каждый односвязный К-элемент, входящий в состав К-поля, является диссипатором энергии, а узловые структуры О, 1, 01, 02 и двухсвязные элементы Т1> и сохраняют энергию. Математически этот факт представляется следующим образом. Пусть дано линейное К-поле в форме сопротивления, т. е. е = Л/, тогда дисси-пируемая энергия есть [c.87]

    Соответственно фрагмент (2.16) связной диаграммы -й ячейки является результатом свертки по пространству (в пределах -го слоя) локальной диаграммы процесса молекулярной диффузии. Заметим, что топологическая структура диффузии, основанная на диаграммном фрагменте (2.16), приводит к диаграммной сети псевдоэнергетического типа. Для построения диаграммной сети диффузии в неподвижной среде в энергетических переменных необходимо перейти от концентраций компонентов к химическим потенциалам, а вместо псевдоэнергетического Т-элемента использовать диссипативный К-элемент, отражающий энергозатраты системы на протекание необратимого процесса диффузии в неподвижной среде. При этом диаграммный фрагмент (2.16) в энергетических переменных принимает вид [c.114]

    Возникает задача построения связной диаграммы химической реакции, которая отражала бы важное свойство необратимости химического превращения. Идея построения такой диаграммы состоит в разделении общей структуры (2.35) на две составляющие подструктуры, одна из которых соответствует прямой, а другая— обратной реакции. При этом односвязный диссипативный К-элемент в диаграмме (2.35) заменяется эквивалентным двухсвязным К-элементом следующего строения на его связях в качестве силовых переменных принимаются сродство прямой 5 ." и обратной реакции, т. е. [c.124]

    Первый вариант детализации приведен на рис. 2.3 (часть диаграммы, не относящаяся к диссипативному участку, аналогична предыдущему случаю и показана условно). Здесь, как и ранее, диссипируемая химическая энергия R-поля равна IrBr, однако R-поле еще модулируется двумя сигналами в виде движущих сил и В - Эти переменные отводятся от левой и правой 0-структур с помощью активных связей, т. е. не несут в себе мощность. Таким образом, химическая энергия 1 8 подводится по центральной связи к R-полю, проводимость которого модулируется сигналами Вг" в и Вг так, что величина диссипируемой энергии согласуется с формулой (2.50). [c.129]

    Второй вариант детализации диссипативного участка приведен на рис. 2.4. Здесь диссипативное R-поле разделено на две части R "> и (согласно диссипативным эффектам прямой и обратной реакций) кроме того, между 1-структурами введена активная связь. Направление полустрелок на R<">- и К< >-полях таково, что суммарная диссипируемая энергия равна— В ). Наличие активной связи между 1-узлами обеспечивает равенство потоков Ij. на каждом из них без преобразования мощности. [c.129]

    В ранее рассмотренных энергетических диаграммах химических реакций аналогичная 1-структура связывалась с диссипативным К-элементом для отражения эффекта диссипации химической энергии по мере приближения системы к равновесию. В данном случае, находясь в рамках псевдоэнергетического подхода, важно отразить в диаграмме связи функциональную зависимость (в общем случае нелинейную) скорости химического превращения от состава системы и ее температуры [c.140]

    Учет гидравлического сопротивления. Этим элементом условно учитываются все потери гидравлического напора за счет трения жидкости о стенки трубопровода, потери на вентилях, задвижках й т. д. Соответствующий фрагмент диаграммы связи является сочетанием 1-структуры с В-диссипативным элементом, на котором аадается нелинейное соотношение между перепадом давленйя P = Р — Рз и расходом 4 через гидравлическое сопротивление. При этом следует иметь в виду, что почти все данные но коэффициентам сопротивления относятся к установившимся потокам. Поэтому при изучении и моделировании неустановивщихся режимов гидравлических цепей не исключена коррекция этих данных по результатам эксперимента. [c.169]

    Выделим в области выходного патрубка с внутренней стороны бака некоторую поверхность (см. рис. 2.26) площадью (причем 81 82) так, чтобы на ней скорость движения жидкости была близка к нулю при давлении, практически равном При этом можно считать, что разность давлений АР Р — Р расходуется в основном на придание жидкости ненулевой скорости в устье со стороны отводной трубы, т. е. в соответствии с уравнением Бернулли для участка между поверхностями д и 82 можно принять АР = pQl/28l, что в терминах диаграмм связи эквивалентно сочетанию 1-структуры с Кв-диссипативным элементом (так называемым бернуллиевым Кв-элементом), отражающим потери энергии на создание динамического напора  [c.177]


Смотреть страницы где упоминается термин Структуры диссипативные: [c.758]    [c.95]    [c.282]    [c.321]    [c.256]    [c.87]    [c.120]    [c.139]    [c.182]    [c.103]   
Самоорганизация в неравновесных физико-химических системах (1983) -- [ c.150 , c.155 ]

Индуцированные шумом переходы Теория и применение в физике,химии и биологии (1987) -- [ c.20 , c.21 , c.28 ]

Термодинамика (1991) -- [ c.284 ]




ПОИСК







© 2025 chem21.info Реклама на сайте