Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизмы регулирования активности ферментов

    До СИХ пор предполагалось, что при больших концентрациях субстрата ско-рость ферментативной реакции не зависит от этой концентрации. Однако су-ш ествуют ферментативные реакции, имеюш ие характерную зависимость стационарной скорости от концентрации субстрата в виде кривой с максимумом. Подобного рода зависимость объясняется так называемым субстратным торможением (ингибирование), которое является следствием образования (наряду с активным) неактивного комплекса субстрата с ферментом. Соотношение вероятностей образования активного и неактивного комплексов меняется с изменением концентрации субстрата. При больших концентрациях субстрата преобладает вероятность образования неактивных комплексов ЕЗ , которые включают одновременно две молекулы субстрата. Как будет показано дальше, именно субстратное угнетение ферментов — наиболее типичная причина нелинейности биохимических систем. Наличие такого типа нелинейности обусловливает важные, с точки зрения механизмов регулирования, свойства ферментативных систем множественность стационарных состояний, колебательный характер изменения переменных.  [c.65]


Рис. 19. Схема механизмов регулирования активности ферментов и ферментных систем в клетке Рис. 19. Схема механизмов регулирования активности ферментов и <a href="/info/952075">ферментных систем</a> в клетке
    Ферменты часто проявляют ингибирующее или активирующее влияние в присутствии физиологических концентраций метаболитов, которые являются предшественниками или продуктами метаболического пути, включающего данный фермент. Регулирование ферментативной активности по такому механизму обеспечивает поддержание концентраций метаболитов на физиологическом уровне. Такой контроль ферментативной активности может осуществляться изменениями конформации фермента, вызываемыми активаторами, ингибиторами или субстратами, и часто включает взаимодействия между субъединицами фермента. Особенно важными аспектами этой проблемы являются 1) кооперативная природа таких взаимодействий и 2) контроль ферментативной активности посредством связывания молекулы с центром, отличающимся от активного центра. Изменения ферментативной активности, которые попадают в эту категорию, часто называют аллостерическими эффектами, однако использование этого термина, к сожалению, не ограничивается этим единственным смыслом. [c.250]

    Адсорбционный механизм регулирования активности ферментов и ферментных комплексов реализуется при соблюдении следующих условий  [c.81]

    Участие компонентов биомембран в осуществлении и регулировании метаболических процессов в клетке. Общая характеристика процессов передачи информации в клетке. Понятие о первичных и вторичных мессенджерах. Классификация, особенности структурно-функциональной организации мембранных белков-рецепторов. Характеристика аденилатциклазного и фосфо-инозитидного пути передачи сигнала в клетку. Роль ионов в осуществлении метаболических процессов с участием мембран. Адсорбционный тип регуляции метаболизма. Понятие о метаболоне, физиологическое значение его образования. Пространствен-но-структурная организация ферментных систем клетки (на примере гликолитического комплекса и цикла Кребса), Экспериментальные исследования взаимодействия ферментов гликолиза с различными структурными компонентами клетки. Модели структуры гликолитического комплекса в скелетных мышцах и на внутренней поверхности мембран эритроцитов. Эстафетный механизм работы ферментов в клетке. Механизмы регулирования функциональной активности векторных ферментов биомембран. Пути нейрогуморальной регуляции функций клеток. [c.284]


    Известны многочисленные регуляторные механизмы метаболизма (гл. 11) некоторые нз них функционируют на уровне собственно ферментов. Вещества, которые либо увеличивают, либо уменьшают скорости катализируемых реакций, действуя непосредственно на фермент, называют эффекторами. Они изменяют структуру фермента таким образом, что изменяется скорость реакции. Механизмы регулирования активности ферментов рассмотрены ниже (разд. 8.7). [c.245]

    Кроме механизмов, регулирующих активность ферментов, существуют механизмы, которые определяют количество синтезируемого фермента. Изменение количества фермента представляет собой один из наиболее решающих факторов в регуляции обмена веществ. Речь идет не только о регулировании скорости биосинтеза ферментов, но и о взаимопревращении активной и неактивной форм фермента. [c.437]

    Долгосрочный механизм регулирования активности мембранных ферментов реализуется за счет белоксинтезирующей системы клетки и заключается в поддержании оптимального соотношения между скоростью биосинтеза и распада этих ферментов. Он направлен на обеспечение биогенеза необходимого количества функционально активных молекул и олигомерных комплексов векторных ферментов, приходящихся на единицу площади поверхности мембраны. Долгосрочный механизм связан с действием различных гормонов, вторичных мессенджеров и других факторов на плазматическую мембрану клетки. [c.95]

    Для разветвленных путей биосинтеза (а к таким относится большинство биосинтетических путей) механизмы регуляции усложняются, так как от активности первого фермента зависит биосинтез нескольких конечных продуктов. Очевидно следующее механизмы регулирования в этом случае должны быть видоизменены таким образом, чтобы перепроизводство одного конечного продукта не приводило к прекращению синтеза других связанных с ним конечных продуктов. Выработалось несколько механизмов контроля по принципу обратной связи применительно к разветвленным биосинтетическим путям. Они сводятся к тому, что в этом случае в регулировании принимают участие все конечные продукты этих путей. Если первый этап биосинтетического пути катализируется одним ферментом, на поверхности молекулы этого фермента имеются различные регуляторные центры, с каждым из которых связывается один из конечных продуктов, выполняющих функцию [c.116]

    Механизм аллостерического регулирования процесса функционирования ферментов обеспечивается узнаванием и связыванием метаболита-регулятора в аллостерическом центре. В результате происходит изменение конформационного состояния и каталитических свойств активного центра белковой молекулы. Конечный этап заключается в воздействии по принципу обратной связи на источник возникновения регулирующего сигнала изменение скорости образования продуктов ферментативной реакции, поступающих в цепь последовательных метаболических реакций, приводит к изменению функционирования фермента, продуцирующего метаболит-регулятор. [c.81]

    Имеются еще два свойства ферментов, которые при их успешном моделировании могли бы открыть новые возможности для техники и, в частности, для химической технологии. Первое из них—способность связываться в системы, действуя при этом строго согласованно. В этих системах имеется, как мы знаем, механизм регулирования, причем специфические вещества могут интенсивно влиять на их активность скорость процессов управляется за счет саморегулирования системы по типу обратной связи. Второе свойство, наглядно выявляемое в живой клетке, определяют словами динамичность структуры этих катализаторов. Здесь имеют в виду то, что они непрерывно распадаются и затем вновь возникают (клеточный биосинтез). Активность катализаторов, как это давно известно, часто повышается одновременно со снижением их устойчивости однако в технике это могло бы быть выгодным — лучше иметь непрочный катализатор, но очень быстро и точно выполняющий свои функции. В клетке, благодаря тонкой системе регулирования, после распада сразу возникнут новые порции фермента (катализатора) взамен разрушившихся, и таким образом система в целом будет вполне устойчивой и притом работающей наиболее эффективно. Любой фактор, уничтожающий фермент, может быть нейтрализован за счет процесса быстрого образования новых молекул катализатора. [c.331]

    Другая особенность ферментных систем заключается в том, что геометрически определенная и благоприятная для реакции конфигурация достигается за счет действия таких участков системы, которые не входят непосредственно в состав активного центра, но могут быть собраны и стабилизированы под действием субстрата. Взаимные изменения молекулярной конфигурации превращают молекулы субстрата и активные участки фермента в единую систему, распад которой регенерирует фермент. Возможно, что активные группы фермента или часть его молекулы обладают более растяжимыми связями, и поэтому после распада субстрата или соединения молекул субстратов друг с другом активные группы возвращаются на свои места, словно оттянутые пружиной. К сожалению, кинетика ферментных реакций не учитывает динамичности всех звеньев биокаталитических механизмов и вынуждена ограничиваться заведомо упрощенными схемами и предположениями о неизменности состояния катализатора после реакции. К этому вопросу примыкает и проблема регулирования систем ферментов, разработка которой пока еще находится в начальной стадии. [c.133]


    Все это показывает, что динамическая структура ферментов оказывается фактически не основной причиной повышенной активности их — она возможна и для жестких глобул белков — а механизмом регулирования селективности и защиты активного центра фермента от конкурирующих влияний посторонних примесей, строение которых заметно отличается от строения молекул субстрата. Динамическая [c.280]

    Рассмотрим адсорбционный механизм регулирования функциональной активности ферментов важнейших метаболических путей более подробно, так как он реализуется с участием различных мембранных структур клетки. [c.82]

    Охарактеризуйте основные механизмы регулирования функциональной активности ферментов и ферментных систем в клетке. [c.100]

    Одна из самых сложных проблем молекулярной биологии — проблема регулирования количества синтезируемого фермента.Известно, что химические реакции в организме тонко сбалансированы и существует много механизмов автоматического регулирования, с помощью которых поддерживается кинетика различных метаболических процессов в соответствии с потребностями клетки в данный момент времени. Существуют механизмы автоматического регулирования на уровне самих ферментативных процессов. В них участвуют ферментативные активаторы и ингибиторы, а, кроме того, немаловажную роль играют явления нро-ницаемости и активного транспорта сквозь мембраны. Этот вид регулирования рассмотрен выше. Здесь же мы имеем в виду разобрать другую сторону вопроса. Речь пойдет о синтезе клеткой ферментов. [c.479]

    Липиды в биомембранах выполняют множество функций. Во-первых, они обеспечивают структурную организацию и стабильность клеточных мембран. Во-вторых, выполняют барьерную и транспортную функции. В-третьих, играют фундаментальную роль в передаче информации и регулировании метаболических процессов в клетке. Последняя функция мембранных липидов включает участие их в реакциях биосинтеза поддержании оптимальной активности белков-ферментов мембран выполнении рецепторных функций, обеспечивающих проявление иммунологических свойств и ответственных за взаимодействие клеток а также в процессах накопления, передачи и хранения энергии. Липиды участвуют в механизмах кратковременной и долговременной памяти. В дальнейшем вопрос о выполнении липидами регуляторной роли в различных процессах метаболизма будет рассмотрен более подробно в главах 2, 3. [c.26]

    Регулирование конечным продуктом активности аллостерического фермента определенного биосинтетического пути обеспечивает мгновенную реакцию, приводящую к изменению выхода этого продукта. Если последний оказывается ненужным, отпадает надобность и в ферментах, участвующих в его синтезе. Проявлением максимальной экономичности клеточного метаболизма служат выработанные клеткой механизмы, регулирующие ее ферментативный состав. Очевидна целе- сообразность синтеза только тех ферментов, которые необходимы в данных физиологических условиях. Показано, что у прокариот в одних условиях фермент может содержаться в количестве не более 1—2 молекул, в других — составлять несколько процентов от клеточной массы. [c.116]

    Удаление адениловой группы, ведущее к возникновению деаде-нилированной формы фермента, резко повышает его каталитическую активность. Аналогичный механизм регулирования активности фермента путем присоединения и удаления остатка уксусной кислоты (ацетилирование — деацетилирование) обнаружен для цит- [c.114]

    Огромные успехи исследований механизмов кодирования наследственной информации и биосинтеза белка, ферментативного катализа и регулирования активности ферментов, действия антибиотиков и гормонов, всей той области изучения живого, которую принято называть молекулярной биологией, приучили всех к мысли о том, что в структурах молекул жизни положение буквально каждого атома строго обусловлено и подчинено выполнению предназначенных для этих молекул биологических функций. Именно в атом смысле принято обычно говорить о специфичности биополимеров, прочно ассоциировавшейся в сознании исследователей с однозначным соответствием между структурой и выполняемой функцией. При таком комплексе стр>т<турного детерминизма трудно было освоиться с представлением о специфичности полисахаридов, для многих из которых характерна статистичность структур, микрогетерогенность и, нередко, хаотичность распределения различных моносахаридных остатков по цепи. И, тем не менее, накапливающийся материал по сложному и высоко специализированному функционированию углевод ных полимеров в живых системах убеждает в том, что и в этой области возможен и необходим перевод функций- нальных свойств биополимеров на язык молекулярных структур, т. е. применим основной принцип молекулярной) [c.162]

    Основные научные исследования относятся к химии физиологически активных соединений и энзимоло-гин. Изучал химию и механизм биологического действия антибиотика циклосерина, создал (1962) новый метод его химического синтеза. Открыл (1964) принцип создания биологически активных антагонистов аминокислот. Разработал (1978—1980) нути создания физиологически активных веществ на основе фосфорорганических соедн-ионпй. Исследовал способы химического регулирования активности ферментов. [c.615]

    Краткосрочный и долгосрочный механизмы регулирования активности мембранных ферментов в реальных условиях in vivo дополняются многочисленными компонентами функциональным сопряжением одного фермента с другими, наличием каскадных механизмов регуляции, модуляцией активности белков мембран в результате воздействия физических агентов. В целом процесс регулирования функционирования векторных белков-ферментов биомембран рассматривается как сложное-вза-имодействие подсистем универсального регуляторного механизма, обеспечивающее структурно-функциональную интеграцию компонентов мембран и поддержание клеточного гомеостаза (рис. 25). Универсальность основных регуляторных механизмов векторных ферментов биомембран обусловлена сходством их [c.95]

    Наиболее существенное следствие предложенной нами модели состоит в том, что понимание механизма окислительного фосфорилирования требует детального изучения реакций малого цикла, а не большого. Следует подчеркнуть, что в настоящее время количество экспериментальных работ по изучению кинетики АТФазной реакции необозримо (см. [56—60]), тогда как кинетике реакций, непосредственно связанных с синтезом АТФ, посвящены лишь единичные работы [74, 79, 80]. По-видимому, это связано, во-первых, с экспериментальными трудностями изучения кинетики окислительного фосфорилирования, а во-вторых, с тем, что необычные эффекты АДФ до самого последнего времени рассматривались как регуляторные. Последнее заслуживает краткого обсуждения. Появление аномального кинетического поведения ферментов в биохимии вообще и применительно к АТФазе в частности нередко связывают с особенностями ферментов как регулируемых катализаторов. Весьма часто, однако (и это справедливо в отношении функционирования АТФ-синтетазы митохондрий), в стороне от обсуждения остается вопрос что именно и для каких физиологических нужд регулируется аномальным немихаэлисовским поведением. Кроме явной несостоятельности общего утверждения о существовании регуляторных мест связывания для нуклеотидов в молекуле р1 слабой их стороной является отсутствие количественных оценок. Сродство р1 к АДФ при образовании медленного комплекса неактивной АТФазы чрезвычайно велико (К 10 — в отсутствие фосфата и /С 10- М — в присутствии физиологических концентраций фосфата). Это означает, что при реальных концентрациях АДФ в матриксе митохондрий специфическое для АДФ место связывания всегда насыщено нуклеотидом, и регулирование активности фермента внешним сигналом, реализующимся небольшими изменениями концентрации АДФ, неосуществимо. С другой стороны, так как основной функцией р1 является синтез АТФ, логично предположить, что постоянная насыщенность фер- [c.47]

    Установлен механизм регулирования ферментативной активности путем действия ингибитора (или активатора) на специфичный центр белковой молекулы с опосредованной передачей воздействия на активный центр фермента через белок. Обнадужены эффекты кооперативного взаимод. неск.. молжул субстрата на белковой матрице. Найден способ жесткого выведения фермента из процесса посредством индуцированной субстратом необратимой инактивации. [c.81]

    Можно предположить, что дикий тип бактерий вырабатывает всегда некоторое вещество — подавитель, или репрессор, — которое мешает образованию матриц для синтеза белка. Цистрон i, активный в диком штамме клеток, управляет синтезом внутриклеточного (эндогенного) ренрессора. Роль молекул индуктора, вводимого в клетку извне, заключается в химическом связывании ренрессора. В присутствии индуктора репрессор выводится из строя и запускается синтез фермента. Этот гипотетический механизм регулирования действует либо на уровне переноса информации в хромосоме,, либо на уровне цитоплазматического синтеза белка (синтез на рибосомах). В конститутивном штамме i подавитель не синтезируется, так как его цистрон поврежден. Поэтому синтез белка не подавлен, матрица образуется и функционирует на полную мощность. [c.488]

    Настоящее учебное пособие является дальнейшим развитием и существенным дополнением к разделу Мембранология учебника по биофизике, написанного коллективом авторов кафедры биофизики и биотехнологии Воронежского государственного университета (В. Г. Артюхов, Т. А. Ковалева, В. П. Шмелев, 1994). В нем более детально изложены вопросы, касающиеся структурно-функциональной организации молекулярных компонентов биомембран, в том числе и с точки зрения участия последних в осуществлении процессов клеточного метаболизма (глава 1). Большое внимание уделено рассмотрению проблем передачи информации в клетке и роли биомембран в регулировании активности важнейших ферментов и ферментных систем (на примере адсорбционного механизма регуляции гликолитического комплекса). Представлены современные воззрения о взаимосвязи механизмов интеграции метаболических процессов, нейрогуморальной регуляции функций клеток, путях регулирования векторных ферментов [c.8]

    Пути регулирования активности векторных ферментов биомембран Одним из наиболее актуальных вопросов современной мембранологии является выяснение принципов и механизмов регуляции векторных ферментов биомембран (в том числе Na% К -АТФазы), выполняющих разнообразные жизненно важные функции не только для отдельных мембранных структур, но и для клетки в целом. Полифункциональный характер Na , К -АТФа-зы (см. раздел 1.2.4), т.е. сочетание в ней метаболической, транспортной и рецепторной функций, определяет существование достаточно сложных механизмов ее регуляции. Кроме того, изучение механизмов функционирования и регулирования транспортных АТФаз на уровне отдельных клеток и субклеточных компонентов актуально не только в теоретическом, но и в практическом аспекте для оценки степени и характера нарушений этих механизмов при некоторых патологических состояниях, связанных с изменением ионного состава среды и накоплением активных форм кислорода (см, главу 3). Рассмотрим основные пути регулирования функциональной активности одного из ключевых [c.91]

    Рассмотренные выще механизмы способны описывать многие сложные эффекты, и кинетическое уравнение может иметь очень сложную форму. Но в общем случае концентрация [ЕЗ] не может возрастать быстрее, чем растет [3]. Однако при некоторых экспериментальных условиях субстраты или ингибиторы оказывают большее влияние на концентрацию комплекса. Другими словами, получаются 3-образные кривые типа кривой связывания кислорода гемоглобином (разд. 7.13). В особенности это относится к ферментам, играющим важную роль в регулировании обмена веществ. Подобные кооперативные эффекты встречаются в случае ферментов с несколькими активными центрами, поскольку кооперативный эффект подразумевает возрастание сродства второго активного центра к субстрату, когда первый центр занят. Как и в случае гемоглобина, взаимодействия такого типа сопровождаются структурными изменениями. Согласно модели Моно — Шанжо — Ваймана, фермент с несколькими активными центрами может находиться по крайней мере в двух состояниях. Это, вероятно, слишком упрощенная картина, но два является минимальным числом состояний, необходимым для объяснения наблюдаемых эффектов. Предполагается, что в обоих состояниях конформации всех субъединиц одинаковы. Воздействующая на систему молекула (эффектор), которая может быть молекулой субстрата, смещает равновесие в сторону одного или другого из этих двух состояний. Если эффектор смещает равновесие в направлении увеличения скорости реакции, то такой эффектор называется активатором. Если же его действие приводит к снижению скорости реакции, то он называется ингибитором. Как и в случае гемоглобина, воздействие усиливается тем, что одна молекула эффектора оказывает влияние на несколько каталити-21  [c.323]

    Клетка, влияя на свой основной рабочий аппарат — ферментные системы, может регулировать образование любого вещества. Для такого регулирования она использует два пути либо изменяет число действующих молекул фермента, либо изменяет их активность, либо выполняет то и другое одновременно. Если, например, клеткам кишечной палочки, синтезирующим L-изолейцин, давали (в среду) избыток его, то бактерии прекращали синтез этой аминокислоты концентрация ее служила сигналом к ослаблению или прекращению процесса. Этот процесс регулировался двояким действием на клетку. Во-первых, подавлялась активность L-треониндезаминазы — фермента, катализирующего первую стадию биосинтеза L-изолейцина (влияние на первое пусковое звено ферментной системы). Во-вторых, при избытке L-изолейцина прекращалось образование всех ферментов биосинтеза этой аминокислоты, в том числе и L-треониндезаминазы. Оба эти регулярных механизма, как оказалось, существуют независимо друг от друга. Схема, показывающая действие обоих, представлена на рис. 15. [c.88]

    Регулирование сложной цепи химических реакций, называемой клеточным метаболизмом, несомненно, является жизненно важным. В настоящее время известно, что для биосинтеза пуринов существует ряд возможных контрольных механизмов, которые включают подавление синтеза метаболитов самими же метаболитами, родственными с ними веществами или конечными продуктами. Так называемое ингибирование по принципу обратной связи может влиять либо на активность, либо на синтез фермента, ответственного за образование метаболита. Так, активность фосфорибозилпирофосфатами-дотрансферазы (которая катализирует синтез рибозиламин-5-фосфата из глутамина и рибозо-1-пирофосфат-5-фосфата) заметно подавляется АМФ, АДФ, АТФ, ГМФ, ГДФ и ИМФ, но не ингибируется большим числом других пуриновых или пиримидиновых производных, в случае некоторых мутантных штаммов бактерий с генетическим блоком, ведущим к накоплению предшественников аминоимида-зола, некоторые пурины могут вызывать аллостерическое торможение, если только генетический блок не препятствует взаимопревращению пуринов. Однако, когда это взаимопревращение затруднено, аденин становится специфическим ингибитором (препятствует накапливанию предшественников имидазола) и контроль по принципу обратной связи осуществляется на уровне аденина (или аденозина, или АМФ), а не с помощью других пуринов. Превращение гуанозин-5 -фосфата в производные аденина (через восстановительное дезаминирование ГМФ до инозин-5 -фосфата) заметно ингибируется АТФ, что свидетельствует о возможности контроля производными гуанина за синтезом адениновых нуклеотидов. Взаимоотношения между этими отрицательными типами контроля за скоростью синтеза и концентрацией нуклеотидов в клетке и положительными моментами взаимосвязи биосинтетических реакций, как, например, потребность АТФ для синтеза ГМФ и ГТФ для синтеза АМФ, представляются исключительно сложными. Как уже упоминалось выше, контроль за синтезом фермента также может быть установлен по принципу обратной связи примером может служить влияние гуанина на образование ИМФ-дегидрогеназы в мутантных штаммах бактерий с подавленным синтезом ксантозин-5 -фос-фатаминазы. [c.310]

    Мы рассматривали до сих пор явленпя проппцаемостп оболочки клеток. Однако активный перенос имеет не меньшее значение для процессов, протекающих внутри клетки. В последнее время высказывается мнение о том, что транспорт веществ между структурными элементами клетки представляет собой один пз механизмов автоматического регулирования внутриклеточных процессов обмена веществ. Именно через активный транспорт происходит взаимодействие структурных элементов клетки между собой. В этом смысле более всего изучены митохондрии. В митохондриях сосредоточена ферментативная система, генерирующая АТФ за счет энергии дыхания и представляющая собою цепь ферментов дыхания и цепь ферментов сопряженного дыхательного фосфорилирования. Тело митохондрий построено нз мембран, заполненных внутри жидкой фазой. Само пх вещество, состоящее из линонротеидов является разделительной мембраной, через которую осуществляется активный перенос субстратов дыхания, АТФ и других веществ. Продуктом окислительного фосфорилирования, вырабатываемым внутри митохондрий для покрытия энергетических затрат клетки является АТФ. [c.183]

    Явления регулирования скоростей метаболических процессов путем воздействия на активный транспорт субстратов, ионов, ферментов и коферментов является, по всей вероятности, весьма общим механизмом в живой прпроде. [c.185]

    В живых организмах существует физиологически нормальный уровень свободнорадикальных процессов и перекисного окисления липидов, необходимый для регулирования липидного состава, проницаемости мембран, и ряда биосинтетических процессов (Бурлакова и др., 1991). В генерировании свободных радикалов в биогенных системах может принимать участие и пероксидаза. Однако, несмотря на многолетние исследования фермента, полностью раскрыть его роль в биогенных системах пока не удается. Это во многом связано с тем, что слабо изученным является механизм действия фермента и, в особенности, устройство активного центра пероксидазы. Поэтому в этой работе мы постарались раскрыгь механизм действия пероксидазы, а также роль фермента в составе антиоксидантной системы живых организмов, обобщая как литературные, так и собственные исследования. [c.6]

    Таким образом, освобождение молекулярного кислорода (требующее прямого участия лучистой энергии) и превращение СО2 в углеводы (не требующее прямого участия света) - это два отдельных процесса (рис. 7-41). Но, как мы увидим позднее, эти два процесса соединены тонким механизмом обратных связей, что необходимо для регулирования процессов биосинтеза. Например, образование АТР и NADPH в тилакоидных мембранах меняется в зависимости от потребности клетки в этих молекулах, а некоторые ферменты хлоропластов, необходимые для фиксации углерода, инактивируются в темноте и восстанавливают свою активность под влиянием электронтранспортных процессов, стимулируемых светом. [c.463]

    Превращения Фк Фдк действуют как метаболический механизм, включающий и выключающий определенные реакции. Это переключение косвенно регулирует множество биофизических, биохимических, гистологических и морфологических процессов в растениях (рис. 11.11). Многие из наступающих изменений происходят после первого воздействия света на этиолированный проросток, когда некоторая часть его фитохрома переходит в форму Фдк. Эти изменения, обобщенно называемые деэтиоля-цией, помогают растению адаптироваться к свету. При этом изменяется активность многих ферментов и содержание растительных гормонов, из этиопластов развиваются хлоропласты, происходит синтез хлорофилла, каротиноидов и актоциановых пигментов из предшественников. После позеленения этиолированных проростков система фитохромов продолжает влиять на рост и развитие растения в течение всей его жизни. Взаимопревращения Фк и Фдк не только влияют на индукцию цветения у растений как короткого, так и длинного дня, но и участвуют также в регулировании клубнеобразования, покоя, опадения листьев и старения. Однако эффект превращений фитохрома в растениях, выросших на свету, зависит также от времени воздействия света. Чувствительность таких растений к определенным формам фитохрома имеет ритмический характер. Эта интересная проблема будет рассмотрена в следующей главе. [c.343]

    Ионная регуляция является одним из важных механизмов управления внутриклеточными процессами. Изменения ионной силы или ионного состава в клетке влияют на агрегатное состояние и характер движения протоплазмы, функциональное состояние органелл, конформацию и взаимодействие биомакромолекул, изменяют активность и специфичность ферментов и муль-тиферментных систем и т.д. В осуществлении и регулировании различных метаболических процессов в клетке активное участие принимают, прежде всего, ионы металлов. Одновалентные катионы участвуют в регуляции внутриклеточного pH, являются кофакторами многих ферментов, обеспечивают электрические свойства мембран клеток. Установлено, что они контролируют активность и специфичность более 100 ферментов. Большинство [c.74]

    Исследования последних лет выявили существование некоторых аллостерических ферментов в виде нескольких молекулярных форм (изоферментов). Изоферменты катализируют одну и ту же реакцию,, т. е. являются изофункциональными, но обладают разными регуляторными свойствами. Это связано с тем, что изоферменты имеют одинаковые каталитические, но разные регуляторные центры. Каждый изофермент кодируется отдельным геном. Часто гены, детерминирующие изоферменты, локализованы в разных местах (локусах) бактериальной хромосомы. Существование изоферментов позволяет конечным продуктам независимо друг от друга ингибировать активность определенного изофермента, так как каждый изофермент индивидуально, контролируется своим конечным продуктом. Регулирование ферментативной активности при помощи изоферментов — наиболее соверщен-ный регуляторный механизм в разветвленных биосинтетических путях. Считается, что появление изоферментов — эволюционно более позднее-приспособление механизма ретроингибирования применительно к сложно регулируемым биосинтетическим путям. [c.113]


Смотреть страницы где упоминается термин Механизмы регулирования активности ферментов: [c.110]    [c.698]    [c.114]    [c.80]    [c.112]    [c.147]    [c.399]    [c.75]    [c.143]    [c.50]   
Биологические мембраны Структурная организация, функции, модификация физико-химическими агентами (2000) -- [ c.78 ]




ПОИСК





Смотрите так же термины и статьи:

Активность регулирование

Активность фермента

Активные ферментов

Механизмы регулирования активности

Механизмы регулирования функциональной активности ферментов и ферментных систем в клетке



© 2025 chem21.info Реклама на сайте