Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Исследование аллостерических ферментов

    В книге освещены наиболее важные аспекты ферментативной кинетики — способы вывода уравнений стационарной скорости, действие ингибиторов и активаторов на ферменты, кинетические механизмы ферментативных реакций, влияние pH и температуры на скорость ферментативных процессов, кинетические свойства аллостерических ферментов, интегральные формы кинетических уравнений, использование методов быстрой кинетики для исследования протекания ферментативных реакций и принципы статистической обработки данных кинетических измерений. [c.4]


    ИССЛЕДОВАНИЕ АЛЛОСТЕРИЧЕСКИХ ФЕРМЕНТОВ [c.214]

    Естественно, приведенные здесь объяснения могут служить только указаниями на вероятность адекватности предложенных подходов. Исследования аллостерических ферментов при низких концентрациях эффектора и с параллельными измерениями времени конформационной релаксации белка после присоединения эффектора могут привести к экспериментальному подтверждению концепции. [c.120]

    Результаты проведенных исследований позволяют предполагать, что аллостерические ферменты активируются или ингибируются тем или иным аденилатом и что именно это обеспечивает согласованную регуляцию всего метаболизма клетки. Если, например, энергетический заряд клетки возрастает, то активность катаболических ферментов снижается, а активность ферментов, участвующих в процессах синтеза, увеличивается. При уменьшении энергетического заряда наблюдается обратная картина. [c.497]

    Для выяснения природы этих явлений на молекулярном уровне многое может дать изучение изменений биохимических процессов, происходящих при замене изотопного состава воды. Большой интерес представляют работы, в которых под действием D2O установлено подавление синтеза ДНК [183] и торможение синтеза рибосомных РНК [184], работы по исследованию каталитических свойств дейтерированных ферментов [185], по исследованию изменений конфигурации аллостерических ферментов под действием D2O [186]. В анализе влияния D2O на биологические процессы, проведенном в данных работах, наиболее существенно положение о вероятной обусловленности этих эффектов изменениями свойств молекул воды и определение периода адаптации как времени, необходимого для уравнивания изотопного состава воды внешней среды и воды организма. [c.83]

    Главный механизм регуляции метаболизма-контроль количества некоторых ферментов. Этот механизм широко исследовался у бактерий. Регуляция скорости синтеза (3-галактозидазы и других белков, необходимых для использования лактозы, представляет собой классический пример, который детально рассматривается в гл. 28. Исследования, проведенные в последние годы, показали, что регуляции подвержена также скорость расщепления некоторых ферментов. Регуляция метаболизма достигается и путем контроля каталитической активности определенных ферментов. Общий и важный механизм регуляции - обратимый аллостерический контроль. Например, во многих биосинтетических процессах имеет место аллостерическое ингибирование первой реакции конечным продуктом процесса это взаимодействие называют ингибированием по принципу обратной связи, или ретроингибированием. Активность некоторых ферментов модулируется также путем ковалентных модификаций, таких, как фосфорилирование специфического серинового остатка. [c.19]


    Каталитический механизм химотрипсина — фермента, расщепляющего пептидные связи, изучен более подробно, чем механизм любого другого фермента [5371. Такие исследования упрощаются благодаря некоторым особенностям химотрипсина. Это мономерный фермент, не проявляющий аллостерических эффектов структурные изменения, сопровождающие процесс расщепления пептидной связи, очень малы и, наконец, химотрипсин обладает способностью переносить ацильные группы самых разнообразных доноров, например пептидов и эфиров, к самым разнообразным акцепторам, например к воде, спиртам или аминам. Возможность сопоставлений процессов для различных доноров и для различных акцепторов значительно облегчают анализ отдельных каталитических стадий [733, 734]. [c.275]

    Тем не менее исследование явлений аллостерического торможения показало, что белковая молекула фермента, по-видимому, имеет особые участки, предназначенные для воздействия, позволяющие регулировать выход продуктов в системе из нескольких ферментов. Если данный продукт получается в результате деятельности ферментов Ф], Фг, которые функционируют в строгой последовательности  [c.187]

    В 1953 году Новик и Сцилард в своих опытах с одним из таких мутантов, выделявшим в среду промежуточный продукт биосинтеза триптофана — шикимовую кислоту,— показали, что добавление к среде триптофана в значительном количестве вызывало торможение выделения шикимовой кислоты. Полученные данные указывали на то, что триптофан способен угнетать непосредственно первые этапы своего биосинтеза. Ряд других исследований показал, что конечный продукт ферментной системы может угнетать действие ее первого фермента. Это явление было обозначено как аллостерическое угнетение, обратное угнетение, угнетение посредством обратной связи, ретроингибирование. Поскольку мы применяли уже термин угнетение синтеза фермента, то по аналогии можно воспользоваться термином угнетение активности (фермента) конечным продуктом. Конечный продукт обычно не влияет на активность промежуточных ферментов системы, а действует исключительно и непосредственно на ее первый фермент. Таким образом, первый фермент проявляет специфичность не только по отношению к субстрату и коферменту, но и к регулирующему метаболиту. [c.241]

    Приведенные примеры иллюстрируют первые шаги, сделанные на пути конструирования ферментов с аллостерическими свойствами. Полученные результаты показывают потенциальную плодотворность данного направления исследований. Однако для наиболее полного воплощения этих идей в жизнь при конструировании таких полипептидов необходимо учитывать пространственные особенности взаимодействия объединяемых каталитических доменов в гибридных белках, а это невозможно без понимания связей между первичной и пространственной структурами изучаемых полипептидов, что, впрочем, относится и ко всей области рационального дизайна белковых молекул. Интенсивные структурные исследования белков с высоким разрешением и молекулярное моделирование в конце концов позволят решать такого рода проблемы. [c.382]

    Исследование МЬ и НЬ дает, однако, информацию, весьма ценную для понимания свойств обычных и аллостерических ферментов, для понимания электронио-конформациопных взаимодействий. Связывание Ог и других лигандов этими белками вполне сходно со связыванием субстрата ферментом. Молекулярный кислород проникает в полость молекул МЬ и НЬ, но, в отличие от субстрата, не подвергается химическому превращению. Иногда МЬ и НЬ называют почетными ферментами . [c.206]

    Еще одна интересная особенность обнаружена у ал-лостерических ферментов. Все исследованные к настоящему времени аллостерические ферменты обладают четвертичной структурой, их молекулы состоят из нескольких субъединиц. Гемоглобин, о котором уже было рассказано (стр. 241), подобен аллостерическо.му ферменту. [c.315]

    Аллостерические ферменты обеспечивают протекание намного более сложных типов реакций. Хотя пока мы не умеем химически моделировать подобные системы, в будущем понимание механизмов этого типа обещает возможности, далеко выходящие за пределы собственно химической проблематики и технологии. В принципе функциональные полимеры могут быть использованы для получения сверхкомпактных вычислительных элементов (ЭВМ на молекулярном уровне, что является теоретическим пределом миниатюризации) и опознающих устройств. Прогресс в исследованиях подобного рода привел бы к настоящей технической революции. [c.108]

    Исследования последних лет выявили существование некоторых аллостерических ферментов в виде нескольких молекулярных форм (изоферментов). Изоферменты катализируют одну и ту же реакцию,, т. е. являются изофункциональными, но обладают разными регуляторными свойствами. Это связано с тем, что изоферменты имеют одинаковые каталитические, но разные регуляторные центры. Каждый изофермент кодируется отдельным геном. Часто гены, детерминирующие изоферменты, локализованы в разных местах (локусах) бактериальной хромосомы. Существование изоферментов позволяет конечным продуктам независимо друг от друга ингибировать активность определенного изофермента, так как каждый изофермент индивидуально, контролируется своим конечным продуктом. Регулирование ферментативной активности при помощи изоферментов — наиболее соверщен-ный регуляторный механизм в разветвленных биосинтетических путях. Считается, что появление изоферментов — эволюционно более позднее-приспособление механизма ретроингибирования применительно к сложно регулируемым биосинтетическим путям. [c.113]


    Исследования механизма подавления под действием конечного продукта, проведенные in vitro с использованием очищенных ферментов, показали, что ингибитор образует комплекс с ферментом. При этом он связывается со специфическим участком, который имеет высокое сродство к ингибитору и полностью отличается от активного центра фермента. Этот участок Ж. Моно, Ж. Шанжё и Ф. Жакоб назвали аллостерическим участком или аллостерическим центром (от греч. аллос — другой, сте-реос пространственный), а ферменты, имеющие аллостериче-ский центр, — аллостерическими ферментами. [c.12]

    Аллостерический фермент был исследован с помощью ряда физических методов, и была найдена некая физическая характеристика Р, которая зависит от конформации или формы молекулы фермента. Д-р А изучает связывание аналога субстрата 8 (который присоединяется к месту связывания субстрата, но не превращается в продукт). Кривая связывания имеет вид гиперболы. Д-р А измеряет(степень насыщения фермента 8 ) и в то же время находит величину Р при каждом значении Примечательно, что Р измен ся пропорционально изменению з д, относительное изменение Р равно — 0,30, когдаз д, = 0,30 оно равно 0,60, когда= 0,60 и т.д. Затем д-р А измеряет связывание аллостерического ингибитора -I с ферментом, которое описывается сигмоидной кривой. Он обнаруживает, что, когда I связывается с ферментом, никаких изменений в величине Р не наблюдается. Д-р А приходит в возбуждение и восклицает Фермент ведет себя точно так, как я предсказывал, исходя из модели Моно — Уаймена — Шанжё (МУШ) для аллостерических эффектов . Он описывает свои эксперименты и выводы и посылает рукопись в научный журнал. В ответ редактор пишет д-ру А Мы можем опубликовать Ваши данные, но в Ваших выводах имеется небольшое противоречие. Хотя изменение Я при связывании 8 ферментом и согласуется с предсказаниями модели МУШ, модель также предсказывает некоторые изменения в характеристике Р, когда с белком связывается I . Кто прав, д-р А, редактор, или оба неправы Объясните ваш ответ. [c.120]

    Гл. 7 содержит основные сведения по кинетике действия ферментов, занимающих ключевые позиции в клеточном метаболизме, — аллостерических ферментов. Необычные кинетические свойства аллостерических ферментов, важные для выполнения ими регуляторных функций (положительная или отрицательная кинетическая кооперативность по субстрату, т. е. случаи, когда коэффициент Хилла больше или меньше единицы), связаны с их субъединичной структурой и как следствие с наличием в молекуле фермента нескольких активных центров. Если каталитическая эффективность активных центров изменяется по мере насыщения их субстратом в молекуле фермента (это означает, что существуют взаимодействия между активными центрами), то зависимость скорости ферментативной реакции (1 ) от концентрации субстрата (8) обнаруживает отклонения от закона Михаэлиса— Ментен. Следует подчеркнуть, что положительная и отрицательная кинетическая кооперативность по субстрату не являются единственными типами кинетического проявления взаимодействия активных центров в аллостерических ферментах Аллостерические взаимодействия могут приводить также к появлению максимумов и промежуточных плато на кривых зависимости I от [8]о. Для исследования подобных сложных зависимостей потребовалось изменить привычную стратегию постановки кинетического эксперимента, пригодную для изучения гиперболических зависимостей V от [З] во-первых, зкспериментаторам пришлось [существенно увеличивать интервал концентраций субстрата, в котором проводились измерения начальных скоростей ферментативной реакции, и, во-вторых, более густо располагать точки по оси концентраций субстрата. Кроме того, потребовалось повысить точность кинетических экспериментов. Применение подобной измененной стратегии к изучению ферментов, не являющихся объектом аллосте-рической регуляции в клетке, показало, что утверждение, гласящее, что большинство ферментов следует кинетике Михаэлиса— [c.6]

    Выбор аминокислоты, подлежащей замене, как правило, производится с учетом ее роли в функционировании белка. Данные об этом получают в ходе генетических исследований или методом рентгеноструктурного анализа трехмерной структуры белка. Изменяя специфические сайты или целые участки белковой молекулы, можно повысить термостабильность белка, изменить его чувствительность к pH, специфичность, аллостерическую регуляцию, потребность в кофакторе и другие свойства. Так, термостабильность триозо-фосфатиозомеразы удалось повысить, заменив аминокислоты в двух позициях. Этот подход можно использовать как для придания новых свойств уже существующим белкам, так и для создания уникальных ферментов. [c.175]

    К представлению о том, что молекулы субстрата и молекулы регуляторных метаболитов связываются с раздельными (а не с перекрывающимися) центрами фермента, привело часто наблюдаемое различие химического строения специфических субстратов и специфических эффекторов (отсюда, кстати сказать, произошел термин аллостерический эффектор). Герхарт и Парди [4] использовали эту концепцию при исследовании аспартат-транскарбамилазы, для которой отрицательным эффек- [c.239]

    Наиболее подробные исследования проведены с ферментом из мышц кролика — тетрамером с молекулярной массой 237 ООО, состоящим, по-видимому, из одинаковых субъединиц [78]. Имеются некоторые расхождения в мнениях по поводу кинетической схемы [6, 79], однако представляется вероятным (главным образом на основании экопериментов со слабо диссоциирующим ионом N1 + [80]), что тройной комплекс металл — фермент — АДФ может образовываться как при взаимодействии АДФ " с ЕМ, так и непосредственно из фермента и МАДФ (пути 11 и П1 на схеме в разд. 2.4). Было также обнаружено, что только предварительная инкубация фермента с фадфоенолпируватом (ФЕП), но не с МАДф- приводит к увеличению скорости реакции. Последнее свидетельствует об определенной упорядоченно-ста в последовательности связывания субстратов. Фермент из дрожжей подчиняется тому же механизму, однако с существенным отличием — фруктозодифосфат является аллостерическим активатором [80]. [c.678]

    О возможных механизмах подавляющего действия ПС на Na+-, К+-АТФазу мозга. При исследовании кинетики ингибирования ферментативной активности под действием ПС было выявлено наличие конкуренции ПС с активирующими ферментную систему одновалентными ионами (табл. 1). Следует отметить, что левомепромазин и хлорпромазин, обусловливающие наиболее сильное подавление Na -, К -АТФазной активности, конкурировали с обоими активирующими ионами. Остальные же изученные ПС (за исключением фенамина, конкурирующего с ионами калия) конкурировали только с ионами натрия. Возможно, что особое поведение фенамина объясняется тем, что из всех изученных ПС только он является первичным амином. Однако прямых экспериментальных доказательств этого предположения пока не имеется. Роль конкурентного ингибирования в качестве одного из возможных механизмов действия ПС иа Na -, К -АТФазу мозга может быть косвенно подтверждена наличием кооперативного связывания как активирующих одновалентных катионов, так и самих ПС с соответствующими участками АТФазы (табл. 1 и 2), что соответствует данным об аллостерической природе этого фермента (Тарве, Брехтлова, 1967 Robinson, 1970). [c.115]

    Возмолсиость аллостерических взаимодействий предполагает существование сложных связей меледу активацией ферментов и количеством различных промежуточных продуктов. В современных исследованиях изучаются оба аспекта гипотезы Остерхаута — Хасса и считается, что такие взаимодействия вполне возможны. Следует также отметить, что скорость каталиаа может повыситься либо в результате активации ферментов (т. е, перехода ферментов из неактивной формы, которая существует в темноте, в активную форму иа свету), либо благодаря более [c.166]

    Проблема взаимодействия процесса окислительного фосфорилирования с другими метаболическими системами клетки может решаться помощью различного рода кинетических моделей. Их рассмотрение не входит в нашу задачу. Отметим лишь, что такие исследования успешно развиваются, например, в работах Е. Е. Селькова, В. В. Дьшника и др. [14—17]. В их кинетических моделях, описывающих взаимодействие, роль и вклад в энергетику различных подсистем энергетического метаболизма (например, гликолиза и ЦТК), учтена не только стехио-метрическая регуляция скоростей АДФ-зависимых реакций, но и аллостерический контроль ряда ключевых ферментов (гликогенфосфорилазы, фосфофруктокиназы, пируватдегидрогеназы, цитратсинтетазы и изоцитрат-дегидрогеназы), обеспечивающих поддержание диапазона стабилизации АТФ (изменения концентрации АТФ [c.84]


Смотреть страницы где упоминается термин Исследование аллостерических ферментов: [c.204]    [c.36]    [c.163]    [c.66]    [c.194]    [c.28]    [c.28]    [c.159]    [c.267]    [c.334]    [c.113]    [c.346]    [c.357]    [c.194]   
Смотреть главы в:

Практикум по биохимии Изд.2 -> Исследование аллостерических ферментов




ПОИСК





Смотрите так же термины и статьи:

Аллостерические ферменты



© 2024 chem21.info Реклама на сайте