Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Распределение электронной плотности в органических молекулах Строение и реакционная способность

    Легкость протекания электровосстановления органической молекулы с данной функциональной группы определяется прежде всего распределением электронной плотности в молекуле, и численной характеристикой ее служит значение потенциала полуволны. Потенциал полуволны не является постоянной для данной функциональной группы величиной, а меняется в довольно широком диапазоне потенциалов в зависимости от положения в молекуле полярографически активной группы, влияния других функциональных групп, природы всей молекулы, геометрии молекулы и т. д. Поэтому значение 1/2 в серии родственных соединений характеризует не только способность к электровосстановлению данной группы, но и электронное и стерическое взаимодействие последней с полярографически неактивной частью молекулы, взаимное влияние атомов и групп в молекуле, распределение алектрон-ной (прежде всего, я-электронной) плотности и, следовательно, является источником информации о реакционной способности соединения. На 1/2 волны обычно оказывает также влияние природа среды, pH раствора, его ионный состав, поэтому для установления взаимосвязи между строением и 1/2 волн веществ следует сопоставлять значения / измеренных в идентичных условиях. [c.101]


    Все эти явления в органической химии можно рассматривать на различных уровнях теоретических представлений, т. е. с использованием разных моделей. Так, строение органических молекул рассматривают на уровне химического, электронного и пространственного строения, иными словами, взаимного расположения атомов (о чем судят по свойствам и реакционной способности молекул), распределения электронной плотности (с разными способами наглядного представления) и распределения ядер атомов, входящих в молекулу, в пространстве. Каждый из способов имеет свою методику обнаружения (методы химического и физического эксперимента) и методологию (описание, объяснение, выводы). [c.176]

    Теория химического строения, созданная Бутлеровым около 100 лет назад, благодаря глубине и богатству идей, лежащих в ее основе, и в настоящее время определяет пути развития органической химии и химической промышленности. С другой стороны, бурный расцвет экспериментальной и прикладной химии постоянно создавал и создает возможности дальнейшего развития теории строения. Последние десятилетия характеризуются стремлением химиков глубже осознать природу и характер взаимного влияния атомов в молекулах, природу и характер реакционной способности веществ. Исходя из фактов, накопленных органической химией, опираясь на данные физики, подтверждая свои основные выводы квантово-химическими расчетами, химики и физики не только подошли к пониманию природы химической связи, но и смогли в известной мере вскрыть природу и механизм некоторых сторон взаимного влияния атомов в молекулах. Опираясь прежде всего па факты, химики с несомненностью установили, что распределение и способность к перераспределению электронной плотности молекул находятся в тесной связи с реакционной способностью молекул. Отсюда были постепенно выявлены различные механизмы взаимного влияния атомов — статический и динамический индукционный эффекты, эффекты статического и динамического сопряжения. Реальность этих механизмов взаимного влияния атомов, с моей точки зрения, неоспорима. Наличие этих механизмов вытекает из опыта и подтверждается пе только квантово-химическими соображениями, но и громадным фактическим материалом органической химии. Выявление этих механизмов [c.99]

    Дальнейшее рассуждение Хюккеля характерно для квантовохимических теорий электронного строения и реакционной способности органических соединений. После решения (приближенного, конечно) задачи о распределении электронной плотности в молекуле между ним и химическим поведением данного вещества устанавливается зависимость, причем здесь теоретик-физик апеллирует к самым элементарным, а подчас даже наивным аргументам. Данный случай очень типичен. Хюккель рассуждает, например, следующим образом На основе нашей теории мы объясняем влияние заместителей на реакционную способность водородных атомов, находящихся в различных местах, индуцированием разной для различных мест плотности заряда [р]й-электронов. Например, в СвНаС сравнительно с самим бензолом в орто-и пара-положениях имеется избыток положительного, а у мета-углеродного атома — избыток отрицательного заряда. Вследствие кулоновского взаимодействия между этим избыточным зарядом и положительным ядром водорода на потенциальное поле, которое в случае бензола совершает работу при удалении атома водорода из его нормального по- [c.310]


    При рассмотрении свойств ковалентных связей в органических молекулах, которое было проведено в предыдущей главе, мы убедились, что в первом приближении их. можно считать по-стоянны.мн характеристиками связей. Такой подход является достаточно плодотворны.м, если нас интересует только принципиальная возможность органической молекулы вступать в те или иные реакции. Однако он оказывается явно недостаточным, если мы пытаемся объяснить, поче.му изменения в строении молекул приводят к изменениям в их реакционной способности. Бесспорно, это связано с тем, что имеющиеся в молекуле группировки взаимодействуют друг с друго.м. Это взаимодействие приводит к из.ме-нен1 ям в распределении электронной плотности в молекуле, меняет ее геометрическое строение, что неизбежно будет сказываться [c.52]


Смотреть страницы где упоминается термин Распределение электронной плотности в органических молекулах Строение и реакционная способность: [c.11]   
Смотреть главы в:

Введение в электронную теорию органических реакций -> Распределение электронной плотности в органических молекулах Строение и реакционная способность




ПОИСК





Смотрите так же термины и статьи:

Молекула строение

Органические молекулы

Органические строения

Плотность электронов

Реакционная способность органических

Строение и реакционная способность

Электронная плотность

Электронная плотность Плотность электрон

Электронная плотность Электроны

Электронная распределение

Электронное распределение в молекула

Электронное строение

Электронное строение молекул

Электронов распределение

электронами электронное строение



© 2025 chem21.info Реклама на сайте