Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Классификация полимеров и реакций их синтеза

    Синтетические полимеры получают в результате реакций многократного соединения мономерных структурных единиц (звеньев) в одну большую макромолекулу. Реакции их получения по своему характеру подразделяются на цепные и ступенчатые. Последние включают процессы ступенчатой полимеризации (полиприсоединения) и поликонденсации. Можно предложить следующую схему классификации процессов синтеза полимеров они делятся на две большие группы, каждая из которых характеризуется присущими только ей закономерностями  [c.14]


    Другим возможным способом классификации является систематизация по типам полимерных носителей реакционноспособных групп. Особую важность при этом приобретает вопрос активации полимеров. В предыдущем разделе были подробно рассмотрены методы введения различных реакционноспособных групп в полимерные структуры. Приведенные примеры можно обобщить в виде схем для наиболее распространенных полимеров. На рис. 2.3 приводятся данные по полимерным реакциям таких распространенных и стабильных материалов, как полиэтилен и полипропилен. Эти полимеры практически не участвуют ни в каких ионных реакциях, число вводимых в них активных групп обычно незначительно. Как правило, модифицированные структуры очень устойчивы и имеют гидрофобный характер. Однако даже такой чрезвычайно стабильный промышленный пластик, как полипропилен, может быть использован в качестве полимера-носителя в очень тонких реакциях (например, в фиксации ферментов). Модификацию полиэтилена и полипропилена можно осуществлять непосредственно в процессе переработки, поскольку многие технологические процессы (формование волокон, пленкообразование) проводятся из расплава, что создает богатые возможности для введения других активных мономеров, получения привитых и блок-сополимеров и т. д. Сшитый сополимер стирола и дивинилбензола может подвергаться различным химическим превращениям (рис. 2.4). Эти материалы будут подробнее рассмотрены в разд. В.З, посвященном полимерным реагентам. Введение групп типа ЗОзН придает полистиролу гидрофильность и позволяет получить растворимый полимер, однако, если такие группы вводятся в сшитый полимер, реакция протекает в очень неоднородных условиях и число присоединенных групп сильно зависит от размера частиц, их пористости, состояния поверхности и т. д. Очевидно, что в процессах ионообмена выгодно иметь возможно большее число таких групп. Для получения большей ионообменной емкости необходимо вводить группы —80 зН и —Ы КзХ почти в каждое фенильное ядро. При использовании полистирола в качестве носителя (при твердофазном синтезе пептидов, ферментативном катализе, катализе переходными металлами и т. д.) требуется, чтобы количество введенных групп превышало 10%. Химическая модификация полистирола (рис. 2.4) может быть осуществлена [c.44]

    В этом смысле полезно вспомнить классификацию процессов синтеза полимеров на цепные и ступенчатые реакции. Если рассматривать деструкцию как процесс, обратный полимеризации, то можно также предложить разделение реакций деструкции на две группы. К первой следует отнести такие реакции распада макромолекул, которые приводят к единичным актам разрыва макромолекул в результате концентрации энергии разрушающего воздействия на какой-либо одной связи. Разрыв связей протекает по случайному закону, и каждая связь в макромолекулах рвется независимо от другой связи образующиеся осколки макромолекул существуют как устойчивые молекулы, т. е. процесс идет ступенчато, Такая деструкция мо.жет дойти до образования мономеров. [c.240]


    Полимеры можно классифицировать на основании нескольких различных принципов в соответствии с их структурой, типом реакций синтеза, по физическим свойствам и возможностям практического использования. Однако эти способы классификации не во всех случаях исключают друг друга. [c.489]

    КЛАССИФИКАЦИЯ ПОЛИМЕРОВ И РЕАКЦИИ ИХ СИНТЕЗА [c.17]

    Решающим преимуществом фиксированных на полимере функциональных групп является легкость отделения такого полимера от низкомолекулярных соединений. Это облегчает не только синтез, но и применение подобных продуктов. Нерастворимые полимеры отделяют фильтрованием, а растворимые, например, осажде- нием. Их можно использовать многократно и применять в непрерывных процессах. По термостабильности и механической устойчивости, пониженной летучести и токсичности они значительно превосходят низкомолекулярные аналоги. Нерастворимые полимеры, содержащие в макромолекуле различные функциональные группы, можно использовать в том случае, когда эти группы не взаимодействуют между собой. Возможность легкого удаления полимера из реакционной среды позволяет в случае необходимости быстро прервать протекающий процесс. Реакционная среда не содержит загрязнений, что трудно достижимо в случае низкомолекулярных соединений. Классификация полимерных реагентов предложена в [1—3]. Ниже схематически представлены направления реакций и области применения таких продуктов  [c.78]

    В основу классификации процессов синтеза полимеров следует положить такой признак, который позволит выделить особенности получения полимеров как высокомолекулярных соединений. В противном случае, т. е. при классификации процессов синтеза полимеров по аналогии с процессами образования низкомолекулярных соединений, не учитывается макромолекулярная специфика рассматриваемых процессов. По этой же причине не следует классифицировать процессы синтеза полимеров и по типам реакций, используемых в органической химии [6], например реакций замещения и реакций присоединения. [c.10]

    Как уже отмечалось [4], в основу классификации процессов синтеза полимеров следует положить особенность стадии образования макромолекулы — главной стадии процесса синтеза. Однако механизм единичной реакции образования макромолекулы еще не имеет каких-либо особенностей по сравнению с механизмом образования низкомолекулярных соединений. Различие процессов синтеза полимеров может проявиться лишь при формировании всей цепи в целом. Поэтому процессы синтеза полимеров следует классифицировать по способу формирования (составления из низкомолекулярных соединений) всей макромолекулы. [c.10]

    Одним нз наиболее интересных вопросов в области химии координационных полимеров является наличие относительно большого разнообразия геометрических конфигураций, наблюдающихся для различных координационных чисел. Этот взгляд способствовал развитию неорганических полимеров и, конечно, позволил использовать неизвестные ранее возможности и в области органических полимеров. Такой подход подчеркивается в первой части обзора, которая посвящается естественным координационным полимерам. Затем обсуждаются различные системы, которые изучались с целью синтеза координационных полимеров, содержащих мономерные лиганды, с последующим обзором координационных соединений с полимерными лигандами. Здесь, как и в случае любой классификации, должна быть определенная доля объективности. В некоторых случаях неясно, является ли целью опубликованной работы получение полимера или изучение реакции. Большей частью такие исследования включаются в раздел, посвященный синтезам. Далее, когда очевидно, что более ранняя работа не посвящена полимерам, но за ней следует соответствующая работа, целью которой является изучение полимеров, все материалы помещаются вместе в разделе IV Синтетические координационные полимеры . [c.348]

    Строение мономеров не может быть положено в основу классификации процессов, так как в различных условиях образование полимера может происходить за счет различных групп или связей в молекуле того же мономера. Это означает, что один и тот же мономер в зависимости от условий синтеза может вступать в поликонденсацию или полихмеризацию. Так, изоцианатная группа —N=0=0 может вступать в реакцию поликонденсации с соединениями, содержащихми группу ОН  [c.8]


Смотреть главы в:

Химия и технология плёнкообразующих веществ -> Классификация полимеров и реакций их синтеза




ПОИСК





Смотрите так же термины и статьи:

Классификация полимеров

Реакции полимеров

Реакции синтеза

Реакция классификация



© 2025 chem21.info Реклама на сайте