Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стохастический вариант задачи распределения

    СТОХАСТИЧЕСКИЙ ВАРИАНТ ЗАДАЧИ РАСПРЕДЕЛЕНИЯ [c.444]

    В некоторых стохастических задачах история процесса определяет плотность функций распределения для последующих периодов. В этих случаях удобно пользоваться условными вероятностями. Чтобы наглядно продемонстрировать это, обратимся к стохастическому варианту задачи управления скоростью истечения из одиночной емкости, рассмотренной в разд. 2 гл. 7. [c.451]


    Общая формулировка детерминированных процессов дана в разд. 2. Ее можно проиллюстрировать на примере обобщенной задачи распределения. Аналогично в разд. 3 дана общая формулировка стохастических процессов. Она проиллюстрирована на примере стохастической задачи распределения, использующей понятие математического ожидания. Сравнение детерминированных и стохастических процессов приведено в разд. 4. Кроме того, указываются стохастические элементы во многих процессах, в частности химических процессах. В разд. 5 рассматривается стохастический вариант описанной выше задачи распределения, а в разд. 6 — стохастическая модель регенерации катализатора. Задача управления по среднему значению рассматривается как стохастическая благодаря наличию случайной переменной в уравнении Ван дер Поля. Посколь- [c.437]

    В разд. 15 гл. 5 задача распределения изложена в детерминированной форме. Рассмотрим стохастический вариант этой задачи. Детерминированные уравнения имеют вид [c.444]

    Для выполнения операций рассматриваемого этапа процедуры оптимизации адсорбционной установки в условиях неполноты исходной информации кроме изложенного может быть применен и другой подход, базирующийся на представлении всей используемой информации (кроме детерминированной) как случайной. Должно быть намечено несколько вариантов наиболее вероятных законов ее распределения. Для решения такой задачи стохастического программирования в принципе могут применяться такие же методы, что и для решения задач оптимизации в детерминированной постановке. Однако систематизированные конструктивные проработки алгоритмов имеются лишь для задач линейного и квадратичного стохастического программирования. Существенным недостатком такого подхода является большая трудоемкость расчетов, что, естественно, ограничивает область применения строгих методов решения задач и вызвало появление приближенных методов, например метода статистических испытаний (метод Монте-Карло). Значительный интерес для решения стохастических задач представляет использование итерационной многошаговой процедуры, в основу которой положены идея стохастической аппроксимации для учета случайных величин и метод штрафных функций для учета ограничений [51]. При использовании любого из указанных методов следует помнить, что решение задачи всегда будет иметь погрешность вслед- [c.163]

    Рассмотренные в предьщущих главах стохастические и детерминированные модели строятся в предположении, что состояние нефтеперерабатывающих систем и их окружающей среды в каждый момент времени с приемлемой степенью точности поддается количественной оценке. В детерминированных моделях используется гипотеза о наличии однозначных причинно-следственных связей между альтернативами и исходами, а в стохастических моделях исход интерпретируется как случайная величина с известным или неизвестным законом распределения, имеющая вероятностные связи с альтернативами. Здесь альтернатива рассматривается как вариант решения, удовлетворяющий ограничениям задачи и являющийся эффективным, с точки зрения ЛПР, способом достижения поставленной цели, а исход представляет собой последствие реализации альтернативы в качестве управляющего воздействия. При этом предпо- [c.185]


    Поставим задачу об определении точек Я, соответствующих экстремуму плотности вероятности (вероятностному потенциалу). Обычно такая точка единственная, например гауссовское распределение имеет единственный максимум, однако существуют системы, в которых возможны по крайней мере два устойчивых состояния. Такие системы широко применяют на практике, в частности упомянутым свойством обладают переключающие и накопительные устройства в компьютерах. В последнее время открыт класс радиоэлектронных, физических, химических и биологических систем. В соответствии с [Хорстхемке, Лефевр, 1987] в качестве индикаторов, сигнализирующих о переходах в стохастических системах, будем рассматривать экстремумы вероятностного потенциала. Во-первых, это прямое обобщение детерминированных понятий, которое оптимально по сравнению с другими вариантами (моментами распределения, так как моменты не всегда однозначно определяют распределение вероятности), а во-вторых, при осреднении теряется информация. Если плотность вероятности имеет два или более максимума, то водоем при одних и тех же условиях может иметь несколько равновесных уровней. Здесь и далее под равновесными состояниями будем понимать уровни, связанные с экстремумом стационарной плотности вероятности, а под уровнем [c.117]

    Методы синтеза, основанные на теории массового обслужи-вани . Для решения задачи синтеза гибкой ХТС в условиях стохастической неопределенности желательно знать законы распределения упомянутых случайных величин. Тогда, применив аппарат теории массового обслуживания, представляется возможным синтезировать некоторый оптимальный вариант гибкой -ХТС в условиях неопределенности. Теория массового обслуживания— это раздел математики, изучающей случайные процессы, происходящие в так называемых системах массового обслуживания (СМО), т. е. в любых системах, предназначенных для с)бслуживания каких-либо заявок, поступающих в случайные моменты времени [30]. [c.232]

    Рассмотрим формулировку ИЗС структурно-параметрического синтеза ХТС при известных законах распределения неопределенных параметров ХТП как задачи стохастического программирования, которая сводится к поиску минимума математического ожидания (КЭ) синтезируемой ХТС. Содержательная постановка указанного класса ИЗС имеет следующий вид. Заданы ГОТС синтезируемой ХТС, которая образована функциональным объединением всех альтернативных вариантов технологической топологии и инженерно-аппаратурного оформления ХТП, и законы распределения неопределенных параметров ХТП, которые могут войти в оптимальную структуру ХТС. [c.133]


Смотреть страницы где упоминается термин Стохастический вариант задачи распределения: [c.29]   
Смотреть главы в:

Динамическое программирование в процессах химической технологии и методы управления -> Стохастический вариант задачи распределения




ПОИСК





Смотрите так же термины и статьи:

Варианта

Задача распределения



© 2025 chem21.info Реклама на сайте