Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение белков в молоке

    Связи, образующие первичную структуру, очень прочны это обычные ковалентные амидные связи. Однако вторичная и третичная структуры обеспечиваются слабыми связями и устойчивы только в определенных условиях. Например, часто даже умеренное нагревание или изменение кислотности среды ведет к изменению белка растворимый в воде белок становится нерастворимым и свертывается (денатурация белков). Каждый из нас наблюдал это явление при варке яиц (повышение температуры) и скисании молока (изменение кислотности среды). [c.173]


    Количественное определение казеина, альбумина и глобулина в молоке. 10 мл молока обрабатывают 40 мл насыщенного раствора сульфата магния и вносят в нагретую до 40° смесь маленькими порциями тонко измельченный сульфат магния. Осадок отфильтровывают, промывают насыщенным раствором сульфата магния, высушивают и обезжиривают, экстрагируя эфиром в аппарате Сокслета в остатке определяют азот по Кьельдалю и вычисляют затем содержание белка. Этот белок является смесью казеина и глобулина, так как альбумина в указанных условиях не осаждается. [c.358]

    Примером физиолого-химических исследований могут служить работы наших великих физиологов Ивана Михайловича Сеченова и Ивана Петровича Павлова. И. М. Сеченов, в результате 12-летней работы, разрешил вопрос о причине легкой отдачи угольной кислоты кровью. И. П. Павлов, изучая деятельность пищеварительных желез, вместе со своими сотрудниками исследовал состав отделяемых пищеварительных соков. В лаборатории Павлова был предложен метод определения пепсина по Метту, изучались условия действия ферментов, их активирование, обратимость действия ферментов, створаживающее действие пепсина на белок молока и т. п. И. П. Павлов и Н. П. Шеповальников открыли энтерокиназу, активирующую трипсиноген. Ряд прекрасных работ по выяснению нарушения обмена при отключении печени от системы воротной вены проделаны И. П. Павловым совместно с выдающимся биохимиком того времени М. В. Ненцким. В 1847 году [c.14]

    По своему составу доставляемые кровью питательные вещества отличаются от белков, жира и сахара, которые мы находим в молоке. В самом деле, характерные составные части молока — его белок (казеиноген) и молочный сахар — в готовом виде не имеются ни в крови, ни в других органах тела. Следовательно, азотистые вещества, имеющиеся в крови, подвергаются в молочной железе существенной перестройке для образования характерного для молока сложного белка казеиногена. То же относится и к сахару. Лактоза является дисахаридом, состоящим из глюкозы и галактозы с кровью же в молочную железу доставляется глюкоза. (Следовательно, в молочной железе часть глюкозы крови превращаеся в галактозу, а затем здесь же осуществляется синтез лактозы. Ни в каких других органах синтез лактозы не происходит. Жир молока хотя и близок по составу к другим жирам организма, но все же имеет и свои особенности. Так, молочный жир содержит меньше стеариновой и больше низших жирных кислот (масляной, капроновой, каприловой и т. д.), чем другие жиры тела. Молочная железа, таким образом, несколько перестраивает и жиры, приносимые с кровью. Кроме того, молочная железа, как и другие органы, обладает способностью превращать углеводы в жиры. У жвачных животных жиры молока синтезируются с большой интенсивностью из уксусной кислоты, возникающей в процессе распада тех или иных веществ. Увеличение содержания фосфорных соединений, в частности фос( )атидов, в молочной железе в период лактации указывает на определенную связь мел<ду деятельностью железы и накоплением фосфорных соединений. [c.453]


    Промышленность очистки. Так как протеолитические ферменты обладают моющим действием, их используют в определенных количествах при стирке белья, для чистки одежды и обивочных тканей мебели, автомобилей, для удаления белковых нятен. Чаще всего применяются ферменты бактерий, затем грибов и, реже, панкреатин (трипсин), причем для чистки выпускаются специальные патентованные препараты. Они служат, в частности, для выведения пятен крови, что весьма важно при стирке в медицинских учреждениях, госпиталях, а также для выведения пятен молока, яиц и др. Органические растворители таких пятен не снимают, а, наоборот, закрепляют их на ткани. Протеиназы же снимают их легко, гидролизуя белок и переводя его в растворимое состояние. В настоящее время для подобных целей применяют не только протеиназы, но и, как мы видели, амплазу, гидролизующую крахмал, а также липазу, расщепляющую жир. В связи с увеличением количества общественных прачечных и цехов чистки, обслуживающих миллионы людей и тысячи разнообразных учреждений, масштаб использования ферментов в данной отрасли растет. Можно сказать с уверенностью, что синтетические моющие средства, применяемые в специальных препаратах вместе с ферментами (протеиназами, липазами и амилазами), при соответствующих физико-химических условиях и надлежащем составе дают значительно лучшие результаты, чем обычные моющие препараты при удалении стойких пятен, образованных белками, крахмалом или жирами. [c.250]

    Для гигиенической оценки пластмасс пищевого назначения наиболее рациональным было бы качественное и количественное определение компонентов полимера, мигрирующих в питьевую воду и пищевые продукты. Однако анализ химических компонентов, мигрировавших из пластмасс в пищевые продукты, представляет собой трудно выполнимую задачу из-за сложного состава пищевых продуктов. Например, молоко и молочные продукты являются сложными химическими и биологически активными системами, не только мешающими определению отдельных компонентов пластмасс, мигрировавших в них, но и способными изменять первоначальные свойства этих компонентов. Молоко представляет собой сложную коллоидную систему (белок, жир, плазма), в состав которой входят азотсодержащие вещества казеин, альбумин, аминокислоты, гиппуровая кислота и т. д. [11, с. 10]. Растительные масла (подсолнечное, оливковое, кукурузное и т. д.) имеют не менее сложный состав. В состав арахисового масла, например, входят следующие кислоты пальмитиновая, стеариновая, арахиновая, олеиновая, ли-ноленовая и др. [12, с. 8]. В равной степени это относится и к другим пищевым продуктам (сливочное масло, мед, фруктовые соки и т. д.). [c.10]

    Метод анализа белков, использующий влияние концентрации белка на показатель преломления раствора, был введен в 1903 г. Рейссом 1152] и позже развит Робертсоном [153]. Когда в 1925 г. физические методы анализа белков были рассмотрены Штарлингером и Гартлем [154], уже было известно, что рефрактометрический метод имеет серьезные ограничения 1 г белка, растворенный в 100 мл водного раствора, повышает показатель преломления растворителя приблизительно на 0,0018. Так как предельная чувствительность рефрактометров Пульфриха или Аббе равна 0,0001, ясно, что при пользовании этими приборами чувствительность метода меньше, чем метода удельного веса. Погружательный рефрактометр, который несколько более чувствителен, требует значительно большего количества вещества. Влияние на показатель преломления 1 г минеральной соли, растворенной в том же количестве раствора, имеет тот же порядок величины, что и для 1 г белка, и может даже быть значительно больше. Поэтому для обычных анализов обсужденные ранее предположения могут оказаться несправедливыми. При надлежащей осторожности метод применим в той же степени, что и другие методы определения физических констант. Критический анализ условий приложения метода к анализу казеина в сливках молока дал удовлетворительные результаты [155]. Казеин сперва осаждался и промывался, а затем снова растворялся для определения. Аналогичная методика была осуществлена для серума крови Зибенма-ном[156], который измерил различие в преломлении дон после тепловой коагуляции белков при pH 4,6, и для сока картофеля Вольфом [157], который применял интерферометр, дающий большую точность, чем рефрактометр, и удалял белок кипячением и фильтрованием. См. также работы по применению метода показателя преломления для анализа белков серума [158, 159]. [c.31]

    Таким путем удается добиться и разделения сахаров. Хроматография на бумаге была применена для качественного анализа редуцирующих сахаров в таких разнообразных материалах,. как яблочный сок, яичный белок и кровь [49, 216]. Для локализации положения отдельных сахаров на бумаге был применен аммиачный раствор окиси серебра, хотя в более поздней работе указывается, что флуоресценция, появляющаяся после конденсации редуцирующего сахара с ж-фенилендиамином, дает более надежные результаты. Как силикагель, так и фильтровальная бумага были применены для хроматографического разделения органических кислот, выделенных из фруктов [99, 139]. На этом же принципе основано определение молочной кислоты в молоке и янтарной — в яичных продуктах [60]. Особый интерес для биохимика представляет применение хроматографии на бумаге для разделения пуринов, пиримидинов и нуклеозидов из гидролизата нуклеиновой кислоты [134]. Удалось улучшить метод определения витамина В в рыбьих жирах и продуктах облучения эргостерина, основанный на измерении характерной абсорбции в ультрафиолетовом свете или интенсивности окраски производных с треххлористой сурьмой точность определения была значительно повышена после хроматографического удаления примесей, мешающих определению [79, 95]. [c.164]



Смотреть страницы где упоминается термин Определение белков в молоке: [c.55]    [c.46]    [c.732]    [c.88]    [c.488]    [c.252]    [c.312]    [c.437]    [c.541]    [c.114]   
Смотреть главы в:

Практикум по аналитической химии Анализ Пищевых продуктов -> Определение белков в молоке




ПОИСК





Смотрите так же термины и статьи:

Молоко



© 2025 chem21.info Реклама на сайте