Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основные цвета и цветовой охват

    С отрицательными значениями цветовых координат неизбежно приходится сталкиваться в цветной фотографии и полиграфии, а также в цветном телевидении. Любой цвет, входящий в цветовой охват конкретных основных цветов системы (например, красного, зеленого и синего), может быть определен как сумма (смесь) положительных количеств основных цветов. Цветовой охват ограничен в пространственной интерпретации тремя плоскостями (Е = О, С = О и 5 = 0), которые пересекаются с единичной плоскостью по прямым, образующим три стороны треугольника, показанного на рис. 1.15. Любой цвет 8 Е, С, В) входит в этот охват, если точка его цветности 5 (г, g, Ь) расположена внутри цветового треугольника на единичной плоскости. Одна или две координаты цвета (и, следовательно, одна или две координаты цветности) становятся отрицательными, как только цвет 8 выходит за пределы цветового охвата системы. На рис. 1.17 изображены цвет 81, заключенный внутри цветового охвата системы, и цвет 82, находящийся вне его. Для определения цветов, выходящих за пределы цветового охвата системы, необходимо использовать отрицательные значения цветовых координат. Например, в случае показанного на рис. 1.17 цвета 82 значение координаты О отрицательно. [c.74]


Рис. 1.17. Цветовой охват, получаемый смешением красного (К), зеленого (О) и синего (В) основных цветов, является примером цвета, входящего в этот охват, а Зг — примером цвета, выходящего за пределы цветового охвата системы. Рис. 1.17. <a href="/info/278695">Цветовой охват</a>, получаемый смешением красного (К), зеленого (О) и синего (В) <a href="/info/278939">основных цветов</a>, является примером цвета, входящего в этот охват, а Зг — примером цвета, выходящего за пределы <a href="/info/278695">цветового охвата</a> системы.
    Совокупность чистых спектральных цветов 8 (X) и различных аддитивных смесей 8 (400) и 8 (700) образует в трехкоординатном цветовом пространстве конус, внутри которого должны располагаться цвета 8 любых аддитивных смесей спектральных (монохроматических) цветов. Поверхность конуса представляет собой границу для всех реальных цветов. О цветах, выходящих за пределы (цветового охвата системы), часто говорят, как о нереальных цветах. Основные цвета системы Х, У, z являются характерными примерами нереальных цветов. [c.88]

    ЭТОЙ причине основные цвета, выбранные Гилдом [205] и Райтом [701], результаты экспериментов которых легли в основу данных стандартного колориметрического наблюдателя МКО 1931 г., не обеспечивают максимального цветового охвата, а представляют [c.224]

    Теперь относительно того, почему в цветном телевидении всегда в качестве основных выбираются красный, зеленый и синий цвета. Это легко проиллюстрировать с помощью цветового графика х, у МКО 1931 г., показанного, нанример, на рис. 2.13. Очевидно, что из-за кривизны линии спектральных цветностей не существует таких трех стимулов, смешением которых можно было бы получить любую цветность. Также ясно, что максимальный цветовой охват [c.271]

    Основные стимулы в цветном телевидении могут быть получены различными методами. Можно перед черно-белым кинескопом установить вращающийся диск с красным, зеленым и синим фильтрами. Цветное изображение обеспечивается при синхронизации в приемнике красного, зеленого и синего сигналов с прохождением соответствующих цветных фильтров перед экраном. При другом методе, который более распространен в современных цветных телевизионных приемниках, на экран кинескопа наносится мозаика из точек или полос люминофора, размеры которых настолько малы, что наблюдатель их не различает. Подбираются три люминофора с узкими кривыми спектральной плотности излучения один с максимумом излучения в синей части спектра, второй — в зеленой и третий — в красной части. Хотя некоторые люминофоры дают возможность получить достаточно узкополосные монохроматические красное, зеленое и синее излучения, яркость свечения таких люминофоров неизбежно будет довольно низкой. Чтобы получить красный или синий монохроматические цвета с высокой яркостью, люминофоры должны излучать потоки слишком большой мощности. Это требование по экономическим соображениям невыполнимо, поэтому на практике выбор люминофоров (и тем самым основных цветов) представляет собой компромисс между стремлением обеспечить максимально возможный цветовой охват и желанием получить достаточно яркое изображение. С этой точки зрения вместо почти монохроматического красного основного цвета используют оранжево-красный вместо почти монохроматического фиолетового или синего — менее насыщенный синий вместо почти монохроматического зеленого — до некоторой степени разбавленный желтовато-зеленый цвет. [c.272]


    Эти цветности являются вершинами треугольника, определяющего цветовой охват системы. Легко видеть, что при таком компромиссном охвате нет надежды на точную передачу насыщенных голубых и насыщенных пурпурных цветов любого оригинала. Можно сказать, что в цветном телевидении красный, зеленый и синий цвета принимаются в качестве основных потому, что они пред- [c.272]

    Теперь о качестве воспроизведения тех цветов, которые находятся внутри цветового охвата. По цветностям основных цве- [c.274]

    Границы цветового охвата зависят, главным образом, от чистоты основных цветов используемого способа синтеза чем выше чистота цветов, тем больше цветовой охват. Получение красителей, обеспечивающих воспроизведение возможно большего разнообразия цветов, — одна из основных задач при создании цветных фотографических материалов. [c.44]

    Метод МКО [99] очень хорошо согласуется с отмеченными выше требованиями. Он является в основном методом сдвига цвета, так как с его помощью рассчитываются средние колориметрические сдвиги на равноконтрастном цветовом графике МКО 1960 г. для ряда исследуемых предметов по отношению к исследуемому и стандартному источникам излучения той же цветности. Считается, что набор из восьми образцов атласа Манселла различного цветового тона, средней насыщенности и светлоты обеспечивает удовлетворительное представление охвата практически важных цветов предметов. Спектральные коэффициенты отражения образцов приведены в таблице, данной в публикации МКО [99]. Дополнением к основному набору из восьми образцов являются еще шесть образцов из атласа Манселла с более высокой насыщенностью. Их используют в особых случаях. [c.409]

    При выборе рабочих основных цветов для трехцветиого колориметра, естественно, стремятся к воспроизведению как можно большего числа цветов. Было показано, что невозможно получить все цвета путем аддитивного смешения трех стимулов с фиксированными цветностями, однако достижение по возможности наибольшего цветового охвата является существенным преимуществом любого колориметра. Если выбрать две цветности у краев спектра, а третью — у средней (зеленой) его части (520 нм), то можно получить цветовой охват, близкий к максимальному (рис. 2.32). Можно отметить, что при таком выборе основных цветов в цветовой охват ие попадают чистые желтые и чистые сине-зеленые цвета. [c.223]

    Недостатком основных цветов, выбранных для обеспечения Л1аксималыюго цветового охвата, является то обстоятельство, что два основных цвета (красный и синий) у концов спектра обязательно должны иметь низкую светлоту, и для того чтобы получить поле преимущественно высокой яркости, требуется сравнительно большая энергия излучения источника света в колориметре. По [c.223]

    Попытки применения трехцветных колориметров в промьпп-ленности были весьма затруднительными. Ограниченный цветовой охват привел к исключению многих, практически важных, цветов. Это заставило разработать колориметр, в котором обеспечена возможность добавления любого из основных цветов не только в поле сравнения, но и в тестовое поле. В таких случаях не все координаты цвета в системе рабочих основных цветов положительны, например G и В могут быть положительными числами, я В — отрицательным, определяя тем самым, что измеряемый сине-зеленый цвет должен быть для получения равенства со смесью зеленого и синего рабочих основных цветов разбавлен некоторой частью красного основного рабочего цвета. [c.225]

    Решающим неудобством является не высокая стоимость колориметров или трудность получения результатов в стандартной колориметрической системе, а их малая чувствительность. Кажется парадоксальным, что колориметр, в котором равенство устанавливается глазом, может быть менее чувствительным, чем невооруженный глаз. Разница в данном случае составляет 500% или в 5 раз. Основным методом контроля цвета промышленных изделий является бинокулярное наблюдение большого поля на светлом фоне. В визуальном трехдветном колориметре наблюдение слабо освещенного поля небольшого размера на темном фоне производится обычно одним глазом через небольшое отверстие. Малый угловой размер поля зрения является серьезной помехой как уже было показано (рис. 2.19), неточность установки равенства по цветности резко увеличивается с уменьшением углового размера поля. Даже при наличии трехдветного колориметра с широким цветовым охватом и большим полем зрения, например размером 10—15°, все равно было бы трудно получить точное цветовое равенство при контроле промышленного изделия (например, пластикового покрытия электровыключателей) из-за появления четко различимого пятна Максвелла, вызванного значительным метамеризмом полей колориметра. В смеси поля сравнения преобладает энергия в длинноволновой, средней и коротковолновой частях спектра (красной, зеленой, синей) по сравнению с промежуточными длинами волн (желтые и сине-зеленые цвета). Для излучения, отраженного от промышленных изделий, такое распределение знергии не характерно. Поэтому увеличение размера поля свыше 2° нежелательно. Неточность уравнивания по цветности составляет 0,005 по а и г/, в то время как при прямом сравне-чии двух пластиков почти идентичного цвета легко обнаруживается разница в 0,001 ло х и у. Поэтому общий случай заключается в установке при измерениях на трехцветном колориметре идентичности цвета двух сравниваемых изделий, в то время как даже случайное прямое сравнение обоих этих изделий невооруженным глазом (особенно когда различия по спектру носят простой [c.225]


    Трехцветные колориметры с широким цветовым охватом редко применяются для контроля цвета в промышленности, так как они дают недостаточную информацию об измеряемом образце. Однако вследствие той легкости, с которой может быть воспроизведена относительно богатая гамма цветов, трехцветные колориметры являются весьма полезными устройствами для визуальных исследований. Созданы многие виды трехцветных колориметров, описанные в литературе (например, [736]). В большинстве приборов основные цвета создаются излучением источника света в сочетании с цветными стеклянными или желатиновыми фильтрами. Заметное исключение представляют колориметры Райта [701] и Стайлса [630]. На рис. 2.33 показана принципиальная схема колориметра Стайлса, обычно называемого трихроматором NPL (Национальная физическая лаборатория Великобритании). Он был использован Стайлсом при определении функций сложения для большого поля более чем у 50 наблюдателей. Как уже упоминалось ранее, эти экспериментальные данные составили большую часть данных, использованных для получения функции сложения дополнительного стандартного наблюдателя МКО 1964 г. Модификации трихроматора NPL используются в Национальном исследовательском центре в Канаде и в Электротехнических лабораториях Японии при различных исследованиях цветового зрения. [c.226]

    В колориметре Дональдсона [135] вместо обычных трех основных цветов используется шесть. С помош ью трех дополнительных основных цветов Дональдсон устранил главные недостатки, при-суш ие трехцветным колориметрам с широким цветовым охватом. Шесть основных цветов этого прибора имеют спектральные распределения, охватываюш ие весь видимый спектр с некоторым перекрытием. Эти цвета создаются излучением лампы накалива- [c.226]

    Сомнительно, чтобы использование шестикамерных систем в цветном телевидении имело смысл. Господствующей практикой является сейчас применение камер лишь с положительными вет-вядш кривых спектральной чувствительности. Основной результат пренебрежения отрицательными ветвями заключается в передаче цветов, расположенных вблизи границ цветового охвата, менее насыщенными, чем в оригинале. Другой метод повышения качества цветовоспроизведения, не требующий использования шести камер, заключается в применении электронных устройств и носит название матрицирования [691]. Сигналы, поступающие от камеры, проходят через электронное вычислительное устройство, так называемое матричное устройство, в котором они смешиваются в определенных пропорциях таким образом, чтобы матрицированные сигналы были идентичны сигналам от камеры с идеальными кривыми спектральной чувствительности, показанными на рис. 2.53. Однако матрицирование можно применить только в том случае, если сигналы камеры генерируются линейными устройствами, т. е. устройствами, сигналы которых прямо пропорциональны падающему лучистому потоку. Большинство камер обладает нелинейными характеристиками, и матрицирование приводит лишь к частичноД1у успеху. [c.279]

    Основная задача системы смешения красок заключается в том, чтобы показать, какие цвета получаются на их основе. Набор образцов должен наглядно представлять цвета, которые могут быть получены при помощи данных красок, это и есть цветовой охват. В таких наборах цветов может также указываться количество основных красок, используемое для получения различных смесей. Концепции, наглядно представленные таким систематизи- [c.281]

    Серии цветов от белого цвета бумаги до цвета оттиска со сплошным покрытием краски могут быть получены в процессе растровой печати при постепенном изменении количества красок на оттиске. Эти серии соответствуют смешению цветов небольших точек краски, расположенных рядом и неразрешимых глазом. Печатая ряды таких серий второй краски поверх первой, можно получить двумерную последовательность смешений этих двух красок с белым цветом бумаги. Этот основной метод создания систематизированных изменений цветов в процессе растровой печати использовался очень часто. В качестве наиболее важного примера из прошлого можно привести шкалы цветового охвата Хьюбнера, представляю-ш ие все комбинации растровых плотностей для трех основных красок, а также все возможные комбинации при добавлении к ним четвертой (черной) краски. Аналогично Ивс изготовил совершенные карты со всеми цветами, связанными таким образом, чтобы обеспечивать отбор проб цветового пространства. В том случае, когда растровые точки перекрываются, последовательности цветов соответствуют смешению красок, в противном случае — смешению цветов. Таким образом, в цветовых системах, воспроизведенных в процессе растровой печати, сочетаются принципы систем смешения красок и цветов. [c.288]

    Словарь цвета Мэрца и Пауля, первое издание которого вышло в 1930 г., а второе — в 1950 г., является хорошим примером цветовой системы, подученной в процессе растровой печати [418]. В словаре содержится 7056 различных образцов цвета, отпечатанных на полуглянцевой бумаге, 6048 из которых представляют собой прямоугольники размером 1,3 X 1,6 см, а 1008 более темных — прямоугольники размером 2,7 х 1,6 см. Цвета получены методом полутоновой растровой печати на основе 8 хроматических и 7 основных серых красок. Цветовой круг делится на 8 частей от пурпур-новато-красного до красного, от красного до оранжевого, от оранжевого до желтого, от желтого до зеленого, от зеленого до сине-зеленого, от сине-зеленого до синего, от синего до пурпурноватокрасного и от пурпурного до пурпурновато-красного. В последнем интервале даются оттенки, представленные в последней части предыдущего интервала, очевидно затем, что таким образом цветовой охват может быть значительно увеличен за счет более светлых и более насыщенных цветов. Каждый интервал цветового тона представлен серией из 8 карт. В первой карте каждой серии пред- [c.288]


Смотреть страницы где упоминается термин Основные цвета и цветовой охват: [c.284]   
Цвет в науке и технике (1978) -- [ c.75 ]




ПОИСК







© 2025 chem21.info Реклама на сайте