Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конфигураций сильных нолях

    С точки зрения теории кристаллического поля [2] комплексы железа (II) и (III) должны обладать различной термодинамической стабильностью как в сильном, так и в слабом ноле. Действительно, ион железа (II) имеет 3 -электрониую конфигурацию, а энергия стабилизации сильным кристаллическим полем (ЭСКП) октаэдра для электронной структуры максимальна и равна А ,. Для слабого [c.128]


    При одной и той же электронной конфигурации (для первых и вторых квантовых чисел) 2з р энергии атомов сильно меняются при изменении в расположении спиновых векторов. Если принять энергию состояния за ноль, то для Ю уровень будет выше на 1,97 эв (на 45,4 ккал) уровень [c.172]

Рис. 2 Основное состояние атома с элек1ро1г юй конфигурацией (1 в октаэдрич. поле лигандов в случае слабого поля (а) и сильного ноля (6). Рис. 2 <a href="/info/9285">Основное состояние</a> атома с элек1ро1г юй конфигурацией (1 в октаэдрич. <a href="/info/16519">поле лигандов</a> в случае <a href="/info/92491">слабого поля</a> (а) и сильного ноля (6).
    В слабом октаэдрическом поле лигандов энергия стабилизацш равна произведению Од, умноженному на 4 для конфигураций с на 6 для (Р, в , (Р на 12 для й , В слабом тетраэдрическом поле )д умножается на 4 для на 6 для й , и на 12 для сР, сР. Значения ЮВд, необходимые для вычисления энергии стабилизации в случае октаэдрического поля, находятся из спектров поглощения ионов в соединениях с октаэдрической координацией. Для тетраэдрической конфигурации экспериментальных значений 10 Вд для большинства ионов не имеется, ни значения в тетраэдрическом поло приближенно равны Вд для октаэдрического поля. Значения энергии стабилизации вычислены Д. Макклю-ром [15] и Л. Оргелем [16] для ионов первого переходного ряда периодической системы. Для октаэдрического и тетраэдрического поле вычисления сделаны в предположении слабого поля лигандов, кроме ионов Со-+, N1 +, У + и Сг +. В случае Со + и вычисления для октаэдрического ноля, в случае N1 + и Сг + — для тетраэдрического поля сделаны в иредиоложе-иии сильного ноля. Результаты этих вычислений приведены в таблице. [c.89]

    Симметрия электронной структуры центрального нона может и не быть сферической — это имеет место, когда электронные оболочки иона не целиком заполнены. Предполагая, что все лиганды одинаковы, мы придем к выводу, что состояние, отвечающее минимуму энергии их взаимодействия, соответствует правильному симметричному их расположению в пространстве. В результате конкуренции этих двух факторов проявляется эффект внутренней асимметрии (эффект Яна — Теллера). Так, 1гапример, у иона меди Сц2+, имеющего девять электронов типа Зс/ в октаэдрическом ноле, уровни расщепляются, как было описано выше, а основное состояние отвечает пятикратному вырои<депию. Расщепление ведет к появлению двукратно и 1 рехкратно вырожденных уровней lU и di. Так как максимальное число электронов на всех d-уровнях равно десяти, то при наличии девяти электронов функции и - 2, имеюшие одинаковую энергию, представляют распределение одной электронной дырки . В том состоянии, в котором дырка оказывается на 0.2 . лиганды, расположенные на оси О2 сильнее притягиваются к центральному нону в состоянии lix ,2 более сильное притяжение испытывают лиганды на осях Ох и Оу. В результате правильный октаэдр уже не соответствует минимуму энергии и равновесная конфигурация представлена искаженным тетрагональным октаэдром. [c.226]


    Одной из характерных особенностей таких полипептидных монослоев является их высокий поверхностный момент, значительно превосходящий поверхностный момент полипептидов с неполярными боковыми цепями, например поли-В, Ь-аланина. Полярные связи в боковых цепях влияют на поверхностный момент так же, как и связи, расположенные в главной цепи. Важно подчеркнуть, что поверхностная вязкость поли-Р-бензпл-Ь-аспартата проявляется только при высоких поверхностных давлениях. Вообще поверхностная вязкость мопослоев в конденсированном состоянии оказывается высокой даже при тех площадях, при которых поверхностное давление все еще остается достаточно низким напротив, для монослоя, находящегося в растянутом состоянии, поверхностная вязкость обнаруживается лишь при площадях, при которых поверхностное давление становится достаточно высоким. Другими словами, поверхностная вязкость конденсированной пленки действительно связана с самим монослоем, тогда как поверхностная вязкость растянутой пленки, вероятно, характеризует сильно сжатый монослой. Такое характерное различие в вязкостных св011ствах конденсированных и растянутых пленок наблюдается не только у сополимерных полипептидов, о которых говорилось выше, но и у всех других полимеров. Хотя поверхностная вязкость поли-Р-бензил-Ь-аспартата дает картину, характерную для пленок растянутого типа, кривая зависимости давление — площадь соответствует пленке конденсированного типа. Более того, поверхностная вязкость плепок этого полипептида характеризуется положительным температурным коэффициентом, что отличает их от других пленок растянутого типа, которые имеют обычно отрицательный температурный коэффициент. Различия между пленками ноли-у-бензил-Ь-глутамата и поли-Р-бензил-Ь-аспартата и особенно аномальные свойства последнего обусловлены расположением полярных групп в боковых цепях. Карбонильные группы боковых цепей могут располагаться вне водной поверхности, однако в случае поли- -бензил-Ь-аспартата они соприкасаются с водной поверхностью и вряд ли отличаются от карбонильных групп главной цепи. В соответствии с этим возможность образования водородных связей между карбонильной группой боковой цепи и аминогруппой главной цепи делает конфигурацию этого полимера менее устойчивой. Это может быть причиной [c.306]

    Если поле лигапдов оказывается настолько сильным, что в октаэдрическом комплексе электроны занимают преимущественно орбиты типа е, а не у (хотя бы для этого и приходилось спаривать спины), комплексы относятся к типу спин-снаренных, а ноле лигандов считается сильным. Для систем, содержащих шесть или менее электронов, интерес представляют только три конфигурации, отличающиеся от конфигураций в спин-свободных комплексах с тем же числом электронов. Это конфигурации е, 1 и (11. Они в спин-спаренных комплексах имеют меньший спиновый угловой момент, чем такие же конфигурации в снин-свободных комплексах этот угловой момент определяется квантовым числом 8, где индекс штрих ставится, чтобы отличить такие случаи от соответствующего значения для спин-свободных комплексов. Для 1, и 8 равно соответственно 1, /2 и 0. В случае конфигурации й% очевидно также, что =0, и эта конфигурация не рассматривается нами в дальнейшем, так как у нее все сниновые и орбитальные угловые моменты компенсированы и в первом приближении при такой конфигурации комплексы не должны обладать парамагнетизмом. Магнитное поведение конфигураций е и можно предсказать путем использования константы спин-орбитального взаимодействия, определенной как к = — т. е. рассмотрение нодоболочки е как заполненной более чем наполовину аналогично рассмотрению заполненного более чем наполовину полного -слоя. Это значение X используется в сочетании с соответствующей кривой из рис. 81. При построении этих кривых рассматривались конфигурации из соответствующего числа -электронов и четырех -элект-ронов, а ноэтому, например, = = Можно поступить [c.398]

    Расщепление электронных уровней центрального иона иод воздействием поля лигандов может сильно отражаться па магнитных BOii TBax центрального пона, а также сопровождаться энергетическими эффектами, приводящими к так называемой стабилизации комплекса за счет кристаллического ноля. Первое из указанных обстоятельств в значительной степени снижает ценность магнитного критерия Паулинга относительно преобладания в каждом частном случае ионной или ковалентной связи. Число непарных электронов в том или ином ноне определялось Паулингом на основе принципа максимальной мультиплетности Гунда. Однако при расщеплении уровней в ноле. лпгандов электронные конфигурации, отвечающие основному и возбужденному состояниям, могут меняться ролями, как это видно из рис. 38 на котором схематически изображены термы октаэдрически построенных комплексов Со(1П). Если сила поля больше, чем в точке. 4, то у иона Со " все электроны уже будут спарены и соответствующие комплексы будут диамагнитными. Критическая сила поля, при которой будет происходить подобное явление, разумеется, неодинакова у различных центральных понов. Тем самым, изменение числа непарных электронов, приводящее к [c.325]



Смотреть страницы где упоминается термин Конфигураций сильных нолях: [c.453]    [c.264]    [c.453]    [c.33]   
Современная химия координационных соединений (1963) -- [ c.231 , c.232 ]




ПОИСК





Смотрите так же термины и статьи:

Тио нолят

Эта ноля мин



© 2025 chem21.info Реклама на сайте