Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кетоны методом дисперсии оптической активности

    Во вторую группу хромофоров, которую можно исследовать с помощью методов дисперсии оптического вращения и кругового дихроизма, входят внутренне симметричные, но асимметрично возмущенные хромофоры. Типичным примером такой группы является карбонильная (например, альдегидная, кетонная, кислотная, эфирная, амидная, лактонная, лактамная и т. д.). В этом случае сам хромофор не имеет оптической активности, но если поместить его в несимметричное молекулярное окружение, то переходы в нем становятся оптически активными. Это является причиной меньшего эффекта Коттона в таких соединениях по сравнению с предыдущими примерами. [c.17]


    Спектры дисперсии оптического вращения и спектры кругового дихроизма, которые в значительной степени заменили первые в качестве главного хироптического метода исследования, применяются к оптически активным (хиральным) кетонам. Такие спектральные исследования особенно важны для определения относительных и абсолютных конфигураций и в конформационном анализе. Способные к поляризации -заместители, такие как галогены, гидрокси- или ацетоксигруппы, а,р- и р, у-ненасыщенные группировки, приводят к сильным эффектам Коттона в ультрафиолетовой области спектра к таким же эффектам могут приводить подходящим образом расположенные удаленные заместители. Этот предмет подробно изложен в монографии [484]. Ссылки на более поздние работы и важный вклад в эмпирическую теорию метода см. в работе [485].  [c.679]

    Хотя явление оптической активности известно давно [1], первыми спектральными методами, которые стали широко использоваться в органической химии, явились ультрафиолетовая и инфракрасная спектроскопия. Дисперсия оптического вращения и феноменологически родственный оптический круговой дихроизм только недавно привлекли внимание химиков и биохимиков и нашли широкое применение для решения аналитических, структурных и стереохимических проблем. Дисперсия оптического вращения (ДОВ) и круговой дихроизм (КД) — новые, очень важные физические методы, поскольку они помогают разобраться в широких аспектах, с которыми связаны многие области знания. Применение этих методов в современной науке очень велико и охватывает структурные и стереохимические проблемы в органической хилши (например, в химии природных соединений), конформационные проблемы в биохимии (спиральность белковых цепей), пространственные аспекты в неорганической химии и химии металлоорганических соединений (например, строение лигандов), а также такие фундаментальные проблемы, как обнаружение оптической активности в космическом пространстве (например, исследование метеоритов и т. д.). Эти оптические методы находятся в настоящее время в стадии развития, и исследование эффекта Коттона почти каждого прежде не изученного хромофора является важным вкладом в развитие стереохимии. Однако исследования в области ДОВ и КД встречают некоторые затруднения, из которых важно упомянуть два следующих. Первое — это технические трудности. В настоящее время возможны измерения в области 180—700 ммк, однако многие хромофоры поглощают ниже 180 ммк. Вторая, более существенная трудность даже когда с помощью имеющихся приборов удается исследовать оптически активный хромофор, иногда нелегко сделать структурные и стереохимические выводы из-за отсутствия теоретических обоснований (например, эффект Коттона, вызываемый п л -переходом в а,р-ненасыщенных кетонах). Отсюда вытекает настоятельная необходимость более [c.101]


    Два родственных оптических метода — дисперсия оптического враи ения (ДОВ) и круговой дихроизм (КД), отличаются от упоминавшихся выше тем, что используются почти исключительно для стереохимических целей. Так, практически только эти методы (вместе с простой поляриметрией) позволяют отличить друг от друга оптические антиподы, а также вообще оптически активные формы от рацемических. Кривые ДОВ и КД особенно чувствительны к изменениям пространственного строения молекул. Например, УФ-спектры кетонов любого строения имеют практически одинаковый характер — главное в них, это полоса поглощения карбонильного хромофора в области 300 нм. Характер же кривых ДОВ оптически активных кетонов существенно зависит от окружения хромофора — от строения всей молекулы в целом и, прежде всего, от расстояния между хромофором и асимметрическим центром. [c.86]

    Интересное применение метод дисперсии вращения нашел для исследования образования полуацеталей. Если к с.меси оптически активного кетона и метилового спирта добавить каплю соляной кислоты, служащей катализатором, то характерная для кетонов аномалия дисперсии оптического вращения постепенно, по мере того как происходит образование полуацеталя, исчезает. Это дает исследователю возможность наблюдать за скоростью образования полуацеталей в зaви и ю ти от строения исходных компонентов . [c.554]

    В заключение отметим, что методы дисперсии оптического вращения и кругового дихроизма очень важны для стереохимических исследований. Эти исследования включают конфигурационные и конформационные задачи для многочисленных соединений, содержащих или не содержащих оптически активные хромофоры в изучаемой спектральной области. Правило актантов позволяет предсказывать знак эффекта Коттона, связанный с некоторыми хромофорами, наиболее общим из которых является кетогруппа. Следует отметить, что применимость правила октантов была показана для а,Р-ненасы-щенных кетонов [22, 23], р,у-ненасыщенных кетонов [13], лактонов [25, 26], лактамов 26] и т. д. Эти вопросы будут освещены в лекциях специалистов в этой области. [c.20]

    Успех работы с новыми приборами превзошел все ожидания. Это объясняется тем, что, хотя структурный анализ проводился с помощью того же самого принципа аналогий, который применяли и тогда, когда оптическое вращение ограничивалось измерением при О-линии натрия, метод вращательной дисперсии давал значительно большие преимущества по сравнению с монохроматической поляриметрией. Прежде всего непосредственное окружение хромофора играет основную роль в возникновении наблюдаемой оптической активности, обусловленной этим хромофором (вицинальный эффект Фрейденберга), сводя, таким образом, всю проблему определения структуры молекул к изучению структуры разнообразных асимметрических центров, таких, например, которые существуют в стероидах и терпенах. Последовательное присоединение хромофора к соответствующим частям скелета иолициклической молекулы путем простых химических реакций позволяет исследовать структуру участков сочленения колец. Помимо этого, знание кривой эффекта Коттона, включая его амплитуду, знак и тонкую структуру, дает более полную характеристику асимметрии, создаваемой окружением около данного хромофора. Например, довольно легко отличить 3-А/В-гранс-кетон от 11-кетона по кривым вращательной дисперсии этих соединений, тогда как инкремент оптического вращения при О-линии натрия относительно исходного стероида без кетогруппы практически был бы одним и тем же в обоих случаях. Более того, если считать, что такие аналогии установлены, то исследования кривой вращательной дисперсии обычно достаточно для решения вопроса о структуре молекулы. Иначе обстоит дело в случае использования только вращения на О-линии натрия здесь приходится вычислять разность между оптическим вращением исследуемого вещества и вращением родственного соединения без хромофора. Последнее соединение, однако, часто нельзя получить из-за отсутствия необходимых исходных веществ или из-за трудностей его синтеза. Таким образом, вращательная дисперсия является более привлекательным методом для химика по сравнению с обычным поляримет- [c.14]

    Одной из важных проблем химии природных соединений является определение абсолютной конфигурации нового оптически активного вещества, выделенного из природных источников. Ряд методов решения указанной задачи был описан в гл. 5. Многие из них очень трудоемки и требуют много времени. К счастью, дисперсия оптического вращешя дает довольно простой метод определения абсолютной конфигурации, хотя он не так надежен, как некоторые из методов, описанных ранее . Два метода определения абсолютной конфигурации — один, основанный на аксиальном правиле галогенкетонов, и другой, основанный на более общем правиле октантов,— уже были изложены в разд. 14-2г и д. Третий метод основан на том, что вследствие сравнительно малого влияния на дисперсию вращения удаленных от хромофора групп оправдано сравнение двух химически различных веществ при условии, что сходно их строение вблизи хромофора. Примером служит дитерпен кафестол, содержащийся в бобах кофе. Деградация кафестола (рис. 14-48, А) дает кетон Б (рис. [c.416]



Смотреть страницы где упоминается термин Кетоны методом дисперсии оптической активности: [c.204]   
Современная аналитическая химия (1977) -- [ c.275 ]




ПОИСК





Смотрите так же термины и статьи:

Метод активные

Методы оптические

Оптическая активность

Оптические методы дисперсия

активное оптически активное



© 2024 chem21.info Реклама на сайте