Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Микробиологические реакции кинетика

    Математические модели кинетики роста микроорганизмов, образования продуктов биосинтеза и утилизации субстратов отличаются от известных моделей химической кинетики. В основу большинства используемых моделей роста микроорганизмов положены уравнения ферментативной кинетики микробиологических процессов [1—4, 23, 27]. Однако, учитывая значительное число протекающих в клетках стадий биохимических ферментативных реакций, применение законов ферментативной кинетики носит в большинстве случаев формальный характер. Отличительной особенностью большинства моделей является использование в качестве основного параметра модели численности или концентрации микробной популяции. Именно большая численность микробных популяций позволяет широко применять при моделировании кинетики роста детерминистический подход, опирающийся на хорошо развитый аппарат дифференциальных уравнений. В то же время известны работы, в которых используются стохастические модели кинетики [25]. Среди них распространены работы, основанные на простой концепции рождения и гибели , что в математическом аспекте позволяет применять аппарат марковских процессов. В более сложных моделях микробная популяция представляется Б виде конечного числа классов, каждый из которых ха- [c.53]


    Вместе с тем математический аппарат, используемый в большинстве случаев при моделировании микробиологических процессов, относится к типу уравнений движения и заимствован из области кинетики химических и биохимических (ферментативных) процессов. Это в принципе не вызывает возражений, так как именно кинетика огромного множества отдельных, но связанных в систему реакций определяет биологические процессы. Вместе с тем, используя для описания процесса, протекающего на популяционном уровне, математический аппарат, созданный для описания процессов, характерных для молекулярного уровня организации биосистемы, следует помнить о том, что в этом случае принципиально невозможно ожидать получения математической модели роста популяции, которая бы давала рациональное истолкование всей наблюдаемой специфики ее поведения. Безусловно останутся явления, особенно относящиеся к вопросу регуляции на популяционном уровне, которые затруднительно интерпретировать в понятиях молекулярного уровня. [c.19]

    Достаточно общую математическую модель процесса микробиологического синтеза антибиотиков предложил В. М. Фишман [123]. Преобразовав уравнение Моно, а также использовав принципы формальной химической кинетики простых реакций, автор предложил систему уравнений, описывающих скорости процессов роста биомассы, убыли субстрата в питательной среде, накопления ингибирующих рост популяции продуктов метаболизма, а также выделения антибиотика в культуральную жидкость  [c.86]

    Принципиальным отличием подхода Хиншельвуда к рассмотрению кинетики роста микробной популяции является развитие концепции определяющего этапа цепи метаболических процессов. Распространенные представления об узком месте как звене, в котором реакция протекает с наименьшей скоростью и тем самым определяет кинетику всего процесса в целом, являются справедливыми для линейных последовательных реакций. Когда процесс в целом определяется протеканием реакций, соединенных в циклы и образующих пространственную сетку последовательных переходов, предполагающих альтернативные пути метаболизма в зависимости от конкретных условий, Хиншельвуд, развивая концепцию узкого места, предлагает принцип наибольшей скорости реакции. Суть этого принципа заключается в том, что при наличии различных маршрутов реакций основное значение в общем процессе метаболизма приобретает тот путь, по которому реакция может развиваться при данных условиях с наибольшей скоростью. Любое изменение условий роста приводит не к изменению локальной стадии микробиологического синтеза, а к перераспределению кинетических параметров всей системы. Ограничение общей скорости процесса в сетке химических реакций внутриклеточного метаболизма не обязательно определяется наиболее медленной стадией, а зависит от соотношения констант скоростей ряда отдельных реакций. При этом соотношение ферментов различных этапов процесса микробиологического синтеза, их разрушение, расход, образование и диффузия определяют поведение популяции в целом. Основное уравнение кинетики процесса микробиологического синтеза, по мнению Хиншельвуда, должно иметь следующий вид  [c.93]


    Уравнения кинетики роста, образования продуктов, потребления субстратов, автолиза биомассы и инактивации продуктов являются специфическими для микробиологических процессов. Математическое описание кинетики этих процессов отличается от традиционной химической кинетики, поскольку все процессы осуществляются с участием биокатализаторов-ферментов. Причем субстрат в процессе превращения в организованную биомассу или продукт метаболизма проходит весьма большое число промежуточных стадий биохимических ферментативных реакций. Поскольку большинство биохимических реакций осуществляется в клетках микроорганизмов, в микробиологической кинетике принято в качестве выходных параметров использовать не абсолютные значения скоростей реакций, а удельные, отнесенные к единице веса микробной массы. [c.14]

    К биохимической кинетике относятся закономерности изменения скоростей биохимических реакций, к биофизической — закономерности протекания физических явлений в живых организмах, например диффузия макромолекул через полупроницаемую мембрану, механизм фотосинтеза, электрокинетические явления. Количественные закономерности роста бактерий —предмет, входящий в микробиологическую кинетику, а количественные закономерности изменений числа особей в популяциях экологической системы относятся к популяционной кинетике. [c.172]

    Для решения задач оптимизации и управления биотехнологическими процессами микробиологического синтеза необходима информация о закономерностях кинетики этих процессов, т. е. их динамической реакции на изменение условий культивирования. В ряде случаев оправдывает себя подход, основанный на составлении каталога вещественно-математических моделей биотехнологических процессов микробиологического синтеза. Например, набор математических моделей для однофакторной зависимости удельной скорости накопления биомассы от лимитирующего субстрата может быть представлен одним из следующих выражений  [c.22]

    Кинетическая кривая роста микроорганизмов в процессе микробиологического синтеза (в биохимических реакторах) при периодическом способе культивирования имеет сложный характер и состоит из ряда фаз [44, 45] лаг-фазы, переходной фазы, экспоненциальной фазы, фазы затухающего роста, стационарной фазы, фазы гибели микроорганизмов. В первый период (лаг-фаза) численность популяции не увеличивается, что соответствует реакции нулевого порядка. Аналогичная зависимость имеет место в стационарной фазе. Для остальных периодов кинетика оказывается более сложной. В качестве кинетической модели роста популяции в условиях периодического процесса наиболее часто используют модель Кобозева. Модели расчета биохимических реакторов широко освещены также в [46— 48]. [c.36]

    Все реакции микробиологического превращения углеводородов являются окислительными процессами. Предельная восстановлен-ность этих веществ делает необходимым для их окисления включение кислорода. Гидрофобный характер молекулы углеводородов является причиной того, что процессы окисления осуществляются оксигеназа-ми, в отличие от окисления более гидрофильных веществ, происходящего под действием дегидрогеназ. Гидрофобность углеводородных субстратов и их ничтожная растворимость в воде требует специфического способа транспорта таких веществ в клетку. Этот процесс еще недостаточно изучен, но имеющиеся в настояищй момент данные говорят о том, что на основном этапе он происходит пассивно, поэтому способы поступления углеводородного субстрата к клеткам в водной среде и его транспорта через оболочку существенно влияют на кинетику роста культур на углеводородных средах [149]. [c.85]

    Современный уровень развития вычислительной техники, информационных систем, локальных и глобальных вычислительных сетей существенно изменил требования к нодгоговке специалистов с высшим образованием. Это относится и к подготовке специалистов химико-технологического профиля. Значительные изменения относятся к подготовке специалистов, занятых в области проектирования химико-технологических установок и производств (здесь требуется от специалисаа уметь работать с различными базами данных по свойствам веществ, типам аппаратов и др., умение работать с пакетами прикладных про)рамм, умение использовать вычислительную технику в составлении чертежей установок, оформления спецификаций и описания технических заданий и др.) к подготовке специалистов в области управления технологическими процессами и производствами (требуется от специалиста уметь оценивать коньюктуру рыш а для эффективного формирования номенклатуры продукции, умения разрабатывать системы автоматического регулирования на новой современной технической базе и т.п.) в области разработки новых процессов и аппаратов химических и биотехнологических производств, нефтепереработки и нефтехимии (требуется от специалиста все более глубокое проникновение в суть процессов - маршрутов и кинетики химических реакций, реакций микробиологического синтеза, умение моделировать и прогнозировать протекание процессов в условиях удаленных от равновесия, умение моделировать процессы с нелинейными эффектами, процессы, протекающие на границе устойчивости и т.п.). [c.30]



Смотреть страницы где упоминается термин Микробиологические реакции кинетика: [c.179]    [c.37]    [c.92]   
Химия промышленных сточных вод (1983) -- [ c.334 , c.337 ]




ПОИСК







© 2025 chem21.info Реклама на сайте