Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

КИНЕТИКА ХИМИЧЕСКИХ РЕАКЦИЙ Формальная кинетика

    Формальная кинетика описывает химический процесс без глубокого изучения механизма реакций. Она базируется на формальном применении закона действующих масс для описания ско — р( )сти не только элементарных, но и для простых и сложных реакций. Том не менее формальные кинетические уравнения, благодаря простоте, находят широкое применение в инженерных расчетах и кинетических исследованиях. [c.22]


    На первый взгляд, проблема элементарного химического акта в мономолекулярной реакции может показаться более простой, чем в бимолекулярной реакции. В действительности это далеко не так. Трудность проблемы заключается в том, что большинство мономолекулярных реакций являются сложными реакциями, протекающими через ряд параллельных и последовательных стадий. В настоящее время общепринятой схемой описания мономолекулярной реакции является схема, предложенная Линдеманом (1922). Рассмотрим особенности мономолекулярной химической реакции типа Ai -> Аа, протекающей в газовой фазе при постоянном объеме. Не вдаваясь в подробности молекулярного механизма процессов активации, дезактивации и химического акта, выразим скорости отдельных стадий и всего процесса с помощью метода формальной кинетики. Скорость п процесса активации молекул Ai можно выразить как сумму скоростей бимолекулярных реакций [c.588]

    Итак, сложный химический процесс, состоящий из ряда параллельных и последовательных простых реакций, можно описать системой дифференциальных уравнений, включающих скорости отдельных стадий. Решение системы дифференциальных уравнений — уже проблема математическая. Однако проинтегрирована ли система уравнений и получено ли окончательное решение в элементарных функциях, моделируется или рассчитывается процесс на ЭВМ, необходимо знать значения констант скоростей простых реакций. В формальной кинетике не раскрывается природа констант скоростей реакций. Константы входят как постоянные множители, значения которых определяются из опытных данных. Важнейшей задачей кинетики является раскрытие закономерностей, определяющих зависимость к от строения реагирующих молекул и условий опыта — температуры, среды, катализатора и других факторов. Задача эта решается двумя путями с одной стороны, идет накопление опытного материала о зависимости констант скоростей элементарных реакций к от различных факторов, с другой — делаются попытки создания теории элементарного химического акта и элементарных реакций, которая позволит предсказать значения к простых реакций в зависимости от строения реагирующих молекул и условий опыта. [c.556]

    Основные положения формальной кинетики — принцип независимости протекания химических реакций, условие материального баланса, а также метод стационарных концентраций Боденштейна — остаются в силе и для реакций в растворах. Основной закон химической кинетики для реакций в растворах обычно записывается в той же форме, как и для реакций, протекающих в газовой фазе  [c.592]


    Существенно облегчает масштабирование полученных при исследовании результатов знание кинетики химических реакций, происходящих при проведении процесса. К сожалению, кинетика многих химических взаимодействий еще не раскрыта. Для выявления хотя бы формальной кинетики, нахождения теплового эффекта реакции, скорости и порядка реакции, энергии активации и т. д. применяют термоаналитические методы анализа. Эти методы реализуются в теплоизолированных установках (не хуже, чем в сосудах Дьюара), и при исследованиях с помощью дифференциальных термопар с большой точностью фиксируются перепады и приращения температур. По полученным термограммам можно рассчитать интересующие исследователя параметры. [c.174]

    Для изучения кинетики химических газовых реакций обычно применяется теория равновесного комплекса. Эта теория оперирует с системой формальных уравнений химической кинетики, в которых неизвестными величинами являются концентрации хи-мически-активных веш,еств, а коэффициентами — константы скоростей химических реакций. Считается, что зависимость констант скоростей от температуры описывается выражением Аррениуса [c.206]

    ОСНОВНЫЕ ПОЛОЖЕНИЯ ФОРМАЛЬНОЙ КИНЕТИКИ ХИМИЧЕСКИХ РЕАКЦИЙ [c.533]

    В первое время в кинетике химических реакций развивалось преимущественно формальное направление, в котором преобладало стремление найти уравнения, выражающие скорость реакции в различные моменты времени преимущественно через физические параметры процесса (число столкновений молекул и пр.). Это направление позволило установить ряд важных закономерностей, однако не давало возможности отразить специфику химического взаимодействия в тех или других реакциях и раскрыть сущность происходящих при этом процессов. [c.462]

    В формальной кинетике рассматривается зависимость скорости реакции от концентрации реагирующих веществ. Она основана на ряде положений, из которых наиболее важными являются закон химической кинетики, принцип независимости протекания химических реакций в системе и уравнение материального баланса реагентов. Закономерности протекания элементарного химического акта и влияние ИХ на общую скорость процесса в формальной кинетике не рассматриваются. [c.533]

    Кинетика гетерогенных химических реакций, протекающих с образованием новой фазы, зависит как от реакционной способности газовых молекул, так и от характера поверхности. Влияние поверхности двоякое. Во-первых, она влияет на кинетику благодаря своим молекулярным и валентным силам. Формально это сводится к изменению работы образования критического зародыша, входящей экспоненциально в константу скорости реакции. Во-вторых, поверхность определяет частоту столкновений в двухмерном адсорбированном слое или частоту столкновений падающих молекул (или атомов) с докритическими зародышами. Опять же формально, это влияние поверхности выражается через адсорбционные характеристики системы поверхность—газ (адсорбент—адсорбат). [c.76]

    Выделение реакции может быть полным или только частичным система сводится либо к отдельной реакции, либо к сложному или даже к сверхсложному химическому превращению. Формальную кинетику химических превращений следует рассматривать именно в такой последовательности, в порядке возрастания сложности их кинетики. [c.65]

    Эти изменения обусловлены успехами смежных областей квантовой химии, молекулярной спектроскопии, молекулярной люминесценции, теории кинетики химических реакций, а также появлением ряда новых весьма плодотворных и эффективных методов эксперимента. Сейчас основной задачей теоретической фотохимии (как и химической кинетики вообще) является не формальное описание процесса, а установление связи реакционной способности реагентов с их строением. Центр тяжести исследований явно смещается в сторону реакций в конденсированной фазе. [c.5]

    Формальной кинетикой называется раздел химической кинетики, в котором рассматривается количественное описание хода химической реакции во времени при постоянной температуре в зависимости от концентрации реагирующих веществ. Знание кинетических характеристик химических процессов имеет большое практическое и теоретическое значение, так как позволяет рассчитывать реакторы и различную химическую аппаратуру и находить наиболее общие методы выяснения механизма реакции, открывая пути для сознательного управления и совершенствования существующих и создания новых технологических процессов. [c.309]

    Содержание кинетики химических реакций составляют два основных раздела а) формально-математическое описание скорости реакции без учета действительного механизма самой реакции, так называемая формальная кинетика б) учение о механизме химического взаимодействия. [c.228]


    Для описания массовой кристаллизации предлагались различные уравнения, основанные на законе диффузии или закономерностях кинетики химических реакций [65—71]. Формально скорость кристаллизации может быть выражена уравнением [65] [c.24]

    В первое время в кинетике химических реакций развивалось преимущественно формальное направление, в котором преобладало стремление найти уравнения, выражающие скорость реакции в различные моменты времени преимущественно через физи- [c.450]

    В феноменологической кинетике скоростью произвольной химической реакции формально называют изменение числа частиц, [c.73]

    И в а н о в А. М., ЖФХ, 44, 632 (1970). Формальная кинетика химических реакций между газом и жидкостью, протекающих с изменением объема. Учет убыли жидких компонентов с отходящими газами. [c.270]

    Гл. 1 традиционно посвящена формализму кинетики элементарных реакций п вопросам термодинамики, поскольку знание формального аппарата кинетики и природы связи между кинетикой и термодинамикой совершенно необходимо для понимания существа возникающих проблем. Далее (гл. 2) рассматриваются различные аспекты физико-химического подхода, связанные в основном с микроскопической частью проблемы описания сложных химических процессов. Универсальный последовательный анализ — его структура и этапы — обсуждается р гл. 3, [c.8]

    Интерес к кинетике радикальных реакций в твердых органических веществах в значительной степени обусловлен необходимостью решения проблем, связанных со стабилизацией органических полимеров, твердофазной полимеризацией, радиационной химией твердых тел и химией низких температур. Один из первых вопросов, который здесь возникает, заключается в том, насколько можно для реакций в твердой фазе использовать обычные представления формальной кинетики (закон действующих масс) и теории элементарного акта (в частности, закон Аррениуса). Очевидно, что протекание химической реакции в твердом теле определяется не только свойствами реагирующих частиц, но и большим числом специфических твердотельных факторов, таких, как дефекты структуры, молекулярная подвижность, изменение свойств твердой матрицы в ходе реакции и т. п. Поэтому для выяснения особенностей кинетики реакций в твердых телах мы выбирали модельные системы, в которых по крайней мере часть из этих факторов не влияет на реакцию. Например, можно предположить, что для начальных стадий процессов радиолиза, фотолиза или термического разложения твердых тел можно пользоваться моделью певозмущеппой матрицы, не меняющейся в ходе реакции, монокристаллы можно считать примером максимально бездефектных твердых матррщ и т. п. [c.80]

    Двухфазная модель реакторов с зернистым слоем. До сих пор часто в математической модели реакторов члены уравнений материального и теплового балансов, выражающие скорость химических реакций, аппроксимируются уравнениями формальной химической кинетики с некоторыми эффективными значениями кинетических констант. Недостатками такого приближения, во-первых, является то, что эффективные константы должны определяться для каждого размера зерна и каждой структуры катализатора, а, во-вторых, в этом случае модель обладает слабой экстраполирующей способностью, особенно для быстрых и сильно экзотермических реакций, где велика роль процессов переноса. [c.291]

    Теория Льюиса и фон Эльбе была лишь первой попыткой заменить формальные представленнл прежних теорий теплового распространения пламени конкретными физическими представлениями, основанными на кинетике химических реакций Последующее развитие теории распространения пламепи показало высокую эффективность и плодотворность этого кинетического направления в теории горения. [c.239]

    Современное состояние теории элементарного химического акта и теории катализа позволяет определить лишь направления, по которым следует вести поиски катализаторов и условий процесса. Как правило, еще требуются большие экспериментальные исследования при создании новых высокоэффективных катализаторов и каталитических процессов. Одной из задач химической кинетики является выяснение возможности представления сложного химического процесса в виде стадий и определение скоростей, констант скоростей и энергий активации отдельных стадий. Эта задача частично решается в разделе химической кинетики, который получил название формальной кинетики химических реакций. [c.532]

    При кинетических исследованиях химических реакций обычно возникает три типа задач. К задачам первого типа относится феноменологическое изучение зависимости скорости от концентраций реагентов и определение последних во времени. Такие задачи решаются методами, разработанными в формальной кинетике. Если скорость реакции (1.1) равна [c.16]

    Химическая кинетика и катализ. Формальная кинетика. Вывод кинетических уравнений и определение основных кшетических характеристик химических реакций. Теории химической кинетики. Лимитирующая ст адия п]10цесса. Зависимость скорости реакции от смнсрату-ры. Энергия активации и стерический фактор. Кш етика цепных реакций. [c.9]

    В книге можно найти сиедения по всем основным разделам современной химической кинетики гомогенных реакций формальной кинетике, элементарным реакциям в газовой, жидкой и твердой фа 1ах, механизмам различных органических и неорганических реакций, гомогенному катализу, фото- и радиационной химии, макромолекулярной химии и макрокинетике. [c.2]

    Кинетика химических реакций. В реакторах емкостного типа обеспечивается интенсивное перемешивание, поэтому при сравните,чьио небольших объемах реакционной массы эти реакторы адекватно описываются моделями идеального вытеснения во времени. Если реакция идет без изменения объема реакционной массы или его изменением можно пренебречь ввиду малости, то продолжительность основной технологической онерации в реакторе периодического действия можно определить из законов формальной химической кинетики. [c.94]

    Теория Льюиса и Эльбе была лишь первой попыткой заменить формальные представления прежних теорий теплового распространения пламени конкретными физическими представле[шями, основанными на современной кинетике химических реакций. В качестве пробного камня теории была выбрана реакция разложения озоиа с ее простой кинетикой, и на [c.597]

    Задача формирования первичного ореола описывается системой из уравнения материального баланса (7.2й) и уравнения кинетики химической реакции (см. гл. IV) при условиях (7.11)—(7.13). Рассмотрим решения сформулированной задачи для различных химических реакций взаиА1одействия вещества со средой. При этом будем предполагать, что скорость гетерогенной химической реакции в кинетической области может быть охарактери ювана уравнениями формальной кинетики. [c.164]

    Предлагаемая вниманию читателей книга посвящена исследованию кинетики гетерогенной кристаллизации из газовой фазы. Имеется несколько монографий по общим вопросам кристаллизации, однако кинетика кристаллизации в них отдельно не рассматривается, хотя она заслуживает к себе такого же отношения, как и кинетика химических реакций. Более того, можно показать, что формальная химическая кинетика гетерогенных реакций может быть получена из основных положений теории пуклеации и поверхностных явлений. [c.3]

    В работах Н. А. Изгарышева впервые было обращено внимание на скоростную природу торможения нроцессов разряда ионов на электродах. Фольмер, исходя из основной идеи теории И. А. Изгарышева, дал количественную трактовку процессам замедленного разряда ионов. Но при этом постановка вопроса Фольмером была сильно сужена, ограничена и во многом искажена. Фольмер и его многочисленные последователи для решения частной задачи — выяснения кинетики катодного выделения водорода — избрали носко,лько формальный нуть. Создание теории электродных реакций в значительной мере сводилось к истолкованию эмпирической формулы Тафеля. Правдоподобного истолкования формулы Тафеля удалось достигнуть применением к разряду ионов. водорода уравнения кинетики химических реакций Аррениуса. В трудах наиболее прямолинейных последователей Фольмера указанная постановка задачи распространена на все явления электро,лиза, как обпщя теория электрохимических реакций. [c.243]

    Учитывая, что исходное сырье представляет собой сложную систему как в химическом, так и в физическом отношении, а все основные и побочные реакции протекают на поверхности полидисперсных катализаторов в условиях нарастающей дезактивации, исследование проблем кинетики процессов каталитического гидрооблагораживання остатков строится на двух уровнях теоретических представлений. На первом уровне не учитывается гетерогенность протекания процесса, т. е. используются формальные подходы гомогенного катализа, основанные на различных эмпирических моделях, описывающих формальную кинетику основных реакций [55]. На втором уровне используются макро-кинетические методы гетерогенного катализа с учетом закономерностей диффузионных процессов, протекающих на зерне и в порах катализатора и использующих математические модели, связьшающие материальные балансы изменения концентраций реагентов с диффузионными характеристиками зерна и сырья, объединенные известными приемами. диффузионной кинетики [27]. [c.70]

    Одной из задач химической кинетики является количественное описание хода химической реакции во времени при постоянной температуре в зависимости от концентраций реагирующих веществ. Соответствующие математические соотношения ВЫ1ЮДЯТСЯ с помощью основного постулата химической кинетики (см. стр. 14). Раздел химической кинетики, в котором рас-смЁтриваются указанные вопросы, называется формальной кинетикой. [c.13]

    Если скорость химической реакции на поверхности катализатора достаточно велика, то адсорбционное равновесие не достигается и степени заполнения поверхности молекулами реагентов нельзя определить из уравнения изотермы адсорбции. В предельном случае, когда адсорбция одного из реагентов является наиболее медленной стадией, скорость процесса лимитируется скоростью адсорбции этого реагента, и можно говорить о протекании реакции в адсорбционной области. Скорость адсорбции определяется константой скорости адсорбции и концентрацией сорбируемого вещества следовательно, кинетика процесса в адсорбционной области формально следует уравнению реакции первого порядка. Поэтому различить кинетическую и адсорбционную области только по кинетическим измерениям нельзя и при необходимости следует ставить специальные эксперименты по измерению скорости адсорбции или применять другие прямые методы исследования, например, спектроскопию адсорбированных молекул. [c.84]

    Планирование эксперимента при определении констант уравнений формальной кинетики. В настоящее время интенсивно развивается новое направление по применению статистических методов для изучения механизма и определения кинетических констант сложлых химических реакций [30, 31, 32]. Рассмотрим наиболее простые приемы, основанные на использовании идей и методов пла-нирог.ания экстремальных экспериментов для определения констант уравнений формальной кинетики. Наибольшее распространение получил способ обработки кинетических данных, заключающийся в линеаризации кинетических зависимостей при помощи специальных преобразований. Например, скорость такой реакции [c.241]

    Каталитические процессы широко распространены в природе и эффективно используются в различных отраслях промышленности, науки и техники. Так, в химической промышленности посредством гетерогенных каталитических процессов получают десятки миллионов тонн аммиака из азота воздуха и водорода, азотной кислоты путем окисления аммиака, триоксида серы окислением ЗОг воздухом и др. В нефтехимической промышленности более половины добываемой нефти посредством каталитических процессов крекинга, рифор-минга и т. п. перерабатывается в более ценные продукты — высококачественное моторное топливо, различного вида мономеры для получения полимерных волокон и пластмасс. К многотонкажным каталитическим процессам относятся процессы получения водорода путем конверсии диоксида углерода и метана, синтез спиртов, формальдегида и многие другие. Можно утверждать, что для любой реакции может быть создан катализатор. Теория катализа должна раскрывать закономерности элементарного каталитического акта, зависимость каталитической активности от строения и свойств катализатора и реагирующих молекул и тем самым создать необходимые предпосылки для предсказания строения и свойств катализатора для конкретной реакции, указать пути его получения. К описанию скорости каталитического процесса можно подходить, используя основные положения формальной кинетики и метод переходного состояния. При этом целесообразно сперва выделить общие закономерности катализа, присущие всем видам каталитических процессов, а затем рз смотреть некоторые специфические особенности отдельных групп каталитических процессов. [c.617]

    На основе положений формальной кинетики, метода переходного состояния и законов термодинамики были получены уравнения, описывающие закономерности кинетики простейших реакций. В кинетические уравнения входят константы гетерогенно-каталитических реакций, характеризующие процессы, которые протекают на поверхности, константа равновесия хемосорбционного процесса /Сад и- предельное значение адсорбции (Гоо), константа скорости химического акта (йуд), а также константы, характеризующие процессы массопе-реноса (D, р и р). Теория каталитического процесса, протекающего на поверхности катализатора, должна раскрывать зависимость Кап и йуд от строения и свойств катализатора и реагирующих молекул. Проб лема эта очень сложная и далеко еще не решенная. [c.654]


Смотреть страницы где упоминается термин КИНЕТИКА ХИМИЧЕСКИХ РЕАКЦИЙ Формальная кинетика: [c.497]    [c.38]    [c.497]    [c.83]    [c.7]    [c.95]    [c.106]    [c.9]   
Смотреть главы в:

Курс физической химии (том 2) -> КИНЕТИКА ХИМИЧЕСКИХ РЕАКЦИЙ Формальная кинетика




ПОИСК





Смотрите так же термины и статьи:

Кинетика реакций формальная

Кинетика формальная

Кинетика химическая

Кинетика химических реакций

Кинетика химических реакций и катализ Формальная и молекулярная кинетика

Основные положения формальной кинетики химических реакций

Основы формальной кинетики химических реакций

Формальная кинетика химических реакций, протекающих в реакторах периодического и непрерывного действия



© 2025 chem21.info Реклама на сайте