Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрический момент

Рис. 55. Сложение электрических моментов диполя связывающей и несвязывающей электронных пар молекул HgN и NFa Рис. 55. <a href="/info/1819605">Сложение</a> <a href="/info/7125">электрических моментов диполя</a> связывающей и несвязывающей электронных пар молекул HgN и NFa

    Длина. диполя имеет значение порядка диаметра атома, т. е. 10 , а заряд электрона 1,6-10" Кл, поэтому электрический момент диполя выражается величиной порядка 10 Кл-м (кулон-метр)  [c.83]

    Исследование электрического момента диполя [c.156]

    Индукционное взаимодействие молекул осуществляется за счет их индуцированных диполей. Допустим, что встречаются полярная и неполярная молекулы. Под действием полярной молекулы неполярная молекула деформируется и-в ней возникает (индуцируется) диполь. Индуцированный диполь притягивается к постоянному диполю полярной молекулы. Индуцированный диполь в свою очередь усиливает электрический момент диполя полярной молекулы. [c.90]

    Значения электрических моментов диполя некоторых молекул приведены в табл. 9. [c.85]

    Электрические моменты диполей ( х) некоторых молекул [c.85]

    Неполярные и полярные молекулы. В зависимости от характера распределения электронной плотности молекулы могут быть неполярными и полярными. В неполярных молекулах центры тяжести положительных и отрицательных зарядов совпадают. Полярные молекулы являются диполями, т. е. системами, состоящими из двух равных по величине и противоположных по знаку зарядов - -q и —q), находящихся на некотором расстоянии I друг от друга. Расстояние между центрами тяжести положительного и отрицательного зарядов назывгется длиной диполя. Полярность молекулы, как и полярность связи, оценивают величиной ее электрического момента диполя х, представляющего собой произведение длины диполя I на величину электрического заряда х = Iq. [c.83]

    Электрический момент диполя молекулы представляет собой векторную сумму моментов всех связей и несвязывающих электронных пар в молекуле. Результат сложения зависит от структуры молекулы. Например, молекула СО г имеет симметричное линейное строение  [c.83]

    Электрическим моментом диполя обладают также угловая молекула SOa, пирамидальные молекулы H3N, NP3 и т. д. Отсутствие такого момента свидетельствует о высоко симметричной структуре молекулы, наличие электрического момента диполя — о несимметричности структуры молекулы (табл. 8). [c.84]

    Эта формула дает лучшую сходимость с опытом, чем формула Борна. Метод Ван-Аркеля и де-Бура отличается от борновского тем, что в нем процесс гидратации разделяется на два этапа. Энергия образования первого гидратного слоя вычисляется на основе взаимодействия между газообразным ионом и полярными молекулами воды, т. е. взаимодействия, происходящего вне сферы жидкой фазы. Такой способ расчета позволяет учесть свойства отдельных молекул воды (их дипольные моменты, поляризуемость и т. п.). Поэтому при рассмотрении процесса образования первого гидратного слоя, где эти свойства особенно важны, появляется возможность отказаться от представления о воде лишь как о среде с определенной диэлектрической пропицаемостью. Поскольку на второй стадии цикла в воду вносится ион, уже частично гидратированный, с радиусом, зиачителглю большим, чем радиус исходного иона, то одна и та же ошибка в его определении здесь будет иметь меньи ее значение. Возмуихения, вызванные введением такого гидратированного иоиа в воду, будут меньшими, и представление о воде как о непрерывной среде с определенной диэлектрической проницаемостью, а следовательно, и применение формулы (2.14) оказываются более оправданными, чем в методе Борна. Молекулу воды Ван-Аркель и де-Бур представляют себе в виде с([)еры с радиусом 0,125 нм и электрическим моментом диполя, равкым 6,17-10 ° Кл.м (1,85 0). [c.59]


    Зная экспериментальные значения электрического момента диполя, можно рассчитать полярность связей и эффективные заряды атомов. В простейшем случае двухатомных молекул можно приближенно считать, что центры тяжести зарядов совпадают с ядрами, т. е. I равно межъядерному расстоянию или длине связи. Так, в молекуле НС1 НС1 = 0,127 нм. Если бы хлорид водорода был чисто ионным соединением q равно заряду электрона), то его электрический момент диполя был бы равен [c.85]

    Под действием внешнего электрического поля молекула поляризуется, т. е. в ней происходит перераспределение зарядов, и молекула приобретает новое значение электрического момента диполя. При этом неполярные молекулы могут превратиться в полярные, а полярные становятся еще более полярными. Иначе говоря, под действием внешнего электрического поля в молекулах индуцируется диполь, называемый наведенным или индуцированным. В отличие от постоянных и мгновенных наведенные (индуцированные) диполи существуют лишь при действии внешнего электрического поля. После прекращения действия поля наведенные диполи исчезают. Полярностью и поляризуемостью молекул обусловлено меж-молекулярное взаимодействие. [c.86]

    Электрический момент диполя определяется как произведение любого из его зарядов q па расстояние между нх центрами тяжести I  [c.55]

    Мгновенные и индуцированные диполи. Молекула представляет собой динамическую систему, в которой происходит постоянное движение электронов и колебание ядер. Поэтому распределение зарядов в ней не может быть строго постоянным. Например, молекулу С1а относят к неполярным значение ее электрического момента диполя [c.86]

    Электрический момент ряда кристаллов возникает при приложении к ним механического напряжения. Это явление, открытое братьями Кюри в 1880 г., называется прямым пьезоэлектрическим эффектом. Если же к таким кристаллам приложить электрическое поле, то они деформируются - обратный пьезоэлектрический эффект, для которого [c.38]

    На величину электрического момента диполя молекулы сильно влияют несвяэывающие электронные пары. Например, молекулы H3N и NF3 имеют одинаковую тригонально-пирамидальную форму, полярность связей N—Н и N—F также примерно одинакова, однако электрический момент диполя H3N равен 0,49-10" Кл-м, а NF3— всего 0,07-10 Кл-м. Это объясняется тем, что в H3N направление электрического момента диполя связывающей N—Н и несвязываю- [c.84]

    Индукционное взаимодействие тем больше, чем больше электрический момент диполя и поляризуемость молекулы. [c.90]

    Поляризация характеризуется вектором, суммирующим электрический момент единицы объема [c.37]

    Один из методов установления электрического момента диполя молекул основан на измерении диэлектрической проницаемости веществ при разных температурах. Для этого вещество в виде газа или разбавленного раствора в неполярном растворителе помещают между обкладками конденсатора. При этом емкость конденсатора увеличивается в е раз (е—диэлектрическая проницаемость). Если емкость конденсатора в вакууме обозначить С , а емкость с веществом С, то [c.156]

    Исс.тедование электрических моментов диполей позволяет судить [c.157]

    Эту электронную конфигурацию можно интерпретировать следующим образом. Три занятые а-орбитали соответствуют двум парам электронов (одна из них преимущественно локализована у атома углерода, вторая — около атома азота) и одной о-связи между атомами углерода и, <ислорода. Дважды вырожденный л, -уровень соответствует образованию двух я-связей. Молекула СО характеризуется очень большой энергией диссоциации (1069 кДж/моль), высоким значением силовой постоянной связи (ксо= 1860 Н/м) и малым межъ-ядерным расстоянием (0,1128 нм). Электрический момент диполя молек лы СО незначителен ( х = 0,04 Кл м) при этом эффективный заряд на атоме углерода отрицательный, а на атоме кислорода — положительный. [c.405]

    Молекула Н3Р, как и H3N, имеет форму тригональной пирамиды, (dpN = 0,142 нм, НРН = 93,5°). Ее электрический момент диполя значительно меньше (0,18 10 Кл-м), чем у молекулы H3N. Водородная связь между молекулами НдР практически не проявляется, поэтому фосфин характеризуется более низкими температурами плавления (—133,8 С) и кипения (—87,42°С), чем аммиак. Фосфин — чрезвычайно ядовитый газ с неприятным запахом. [c.368]

    Если ядро с квадрупольным электрическим моментом (ядерный спин 7 1 см. разд. 7.2 и рис. 7.1) находится в неоднородном электрическом поле, являющемся следствием асимметрии электронного распределения, то может возникнуть градиент электрического поля (см. ниже). Квадрупольное ядро будет взаимодействовать с этим градиентом электрического поля в различной степени в зависимости от различных возможных ориентаций эллиптического квадрупольного ядра. Поскольку квадрупольный момент возникает в результате несимметричного распределения электрического заряда в ядре, нас будет больше интересовать электрический квадрупольный момент, нежели магнитный момент. Число разрешенных ядерных ориентаций определяется ядерным магнитным квантовым числом т, которое принимает значения от -(- / до — 1 (всего 27 -Ь 1). Низший по энергии уровень квадруполя соответствует ориентации, для которой наибольшая величина положительного ядерного заряда располагается ближе всего к наибольшей плотности отрицательного заряда в электронном окружении. Разности энергий различных ориентаций не очень велики, и при комнатной температуре в группе молекул существует распределение ориентаций. Если электронное окружение ядра является сферическим (как в С1 ), то все ядерные ориентации эквивалентны и соответствующие энергетические состояния квадруполя вырождены. Если сферическим является ядро (/ = О или 1/2), то энергетических состояний квадруполя не существует. В спектроскопии ЯКР мы изучаем разности энергий невырожденных ядерных ориентаций. Эти разности энергии обычно соответствуют радиочастотному диапазону спектра, т.е. от 0,1 до 700 МГц. [c.260]


    Выделяют особый класс диэлектриков, называемых электретами [25]. Это твердые диэлектрики, которые в результате предварительной обработки становятся электрически поляризованными, т.е. у которых в течение длительного времени обнаруживается внешний электрический момент. Качество электретов характеризуют численным значением поверхностной плотности зарядов и их стабильностью во времени. Хорошие электреты образуются из поливинилацетата, полиамидных смол и др. среднего качества - из серы. Поверхностная плотность электрического заряда керамических электретов достигает значений Ю- Кл/см . [c.38]

    Эта удельная энергия на один нуклон составляет порядка 7-8 МэВ. Ядро, наряду с протоном, нейтроном-и другими элементарными частицами, обладает спином, кроме того его характеризуют магнитным и электрическим моментами. [c.43]

    Электрический момент диполя Химический потенциал Частота [c.8]

    Трифторид азота NF3 в обычных условиях — бесцветный газ (т. кип. —129°С, т. пл. —209°С). Получают его при окислении аммиака фтором. Молекула NF3 имеет пирамидальное строение ( nf = = 0,137 нм, - FNF = 102°). В отличие от H3N электрический момент диполя NF3 (с, 84) очень мал (всего 0,07 Кл м). Электроно-доно1)ных свойств NF3 практически не проявляет. По отношению к нагр( ванию и различным химическим воздействиям трифторид весьма усто11чив, вступает в реакции только выше 100°С. В воде он практически нерастворим, гидролиз начинает протекать лишь при пропускании элек рической искры через смесь его с водяным паром. [c.353]

    Поглощение квантов света молекулами вещества возможно только тогда, когда молекула обладает постоянным электрическим моментом диполя. [c.26]

    Подобная структура молекулы N0 хороию согласуется с ее электрическим моментом диполя (0,02 10 Кл-м), а также межъядер-1 ым расстоянием и силовой постоянной связи, промежуточными меж- .у величинами для двойной и тройной связи  [c.360]

    Дизлектрическап проницаемость — макрохарактеристика вещества —связана с микроснойствами частиц, составляющих /,анпое вещество, а именно с электрическими моментами их диполей и поляризуемостью. Для описания этой связи были предложены различные уравнения, С дним из самых ранних и в то же время наиболее часто используемых является уравнение Дебая  [c.56]

    Поэтому, хотя связи С=0 и имеют сильно полярный характер, вследствие цзаимной компенсации их электрических моментов диполя молекула СО2 в целом неполярна (р = 0). По этой е причине непо- [c.83]

    Электрический момент диполя иногда выражают в дебаях (D) 1D = = 0,33МО- Кл-м. [c.83]

    В полярность и прочность связи Э — Н уменьшается. По этой же причине несвязывающее двухэлектронное облако становится пространственно менее направленным, значение валентного угла - НЭН приближается к 90° и наблюдается уменьшение электрического момента диполя молекул. [c.382]

    Энергия адсорбции полярных молекул на неполярном адсорбенте. При адсорбции полярных молекул на неполярном адсорбенте постоянный дипольный момент молекулы адсорбата поляризует атомы адсорбента, т. е. индуцирует в них электрические моменты. В результате возникаетиндук- ///ип/// ционное притяжение, которое добавляется к дисперсионному. В зависимости от положения и величины диполя в молекуле адсорбата и поляризуемости адсорбента энергия индукционного взаимодействия может достигать нескольких ккал/моль. [c.494]

    Ядро с ядерным спиновым квантовым числом I 1 также характеризуется электрическим моментом, и неспаренный электрон взаимодействует как с магнитным ядерным, так и с электрическим моментом. Градиент электрического поля на ядре может взаимодействовать с ква-друпольным моментом (такое взаимодействие изучается с помощью спектроскопии ядерного квадрупольного резонанса), и это взаимодействие влияет на энергии электронных спиновых состояний через ядерно-электронное магнитное взаимодействие как возмущение второго порядка. Влияние квадрупольного взаимодействия обычно носит сложный характер, поскольку этому взаимодействию сопутствует значительно большее магнитное СТВ. Ориентация ядерного момента квантуется как по отношению к градиенту электрического поля, так и по отношению к направлению магнитного поля. Если направление магнитного поля и оси кристалла параллельны, квадрупольное взаимодействие приводит только к небольшому смещению всех энергетических уровней на по- [c.45]

    Поляризация — это явление образования или ориентации электрических моментов молекул вещества в направлении электрического поля вследствие взаимного смещения электрической плотности в молекуле. Поляризация вещества ведет к появлению электрических зарядов. В связи с этим склонность молекул к поляризации имеет важное значение в процессах электриза- ции топлива. Поляризация численно измеряется в м и относится к молю (мольная поляризация) или единице объема (удельная поляризация) вещества. Чем больше величина удельной поляризации, тем легче топливо электризуется. [c.83]

    Постоянная Планка Квант момента количества движения Массн протона Масса нейтрона Постоянная- Больцмана Универсальная газовая постоянная ГазоЕая постоянная Стандартный молярный объем газа при 273 К и 1,013 105 Па Темп1 ратура Цельсия Атмосферное давление Электрический момент диполя Элеюронвольт [c.9]


Смотреть страницы где упоминается термин Электрический момент: [c.55]    [c.56]    [c.56]    [c.56]    [c.431]    [c.85]    [c.37]    [c.37]    [c.130]    [c.131]    [c.131]   
Руководство по газовой хроматографии (1969) -- [ c.177 ]

Руководство по газовой хроматографии (1969) -- [ c.177 ]

Основные процессы и аппараты химической технологии Издание 4 (низкое качество) (1948) -- [ c.313 ]

Физико-химия полимеров 1978 (1978) -- [ c.242 ]

Физическая и коллоидная химия Издание 3 1963 (1963) -- [ c.0 ]

Электроны в химических реакциях (1985) -- [ c.244 , c.246 , c.248 ]

Руководство по газовой хроматографии (1969) -- [ c.177 ]




ПОИСК







© 2025 chem21.info Реклама на сайте