Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Квантовое число ядерно-спиновое

    Каковы правила отбора для переходов между зеемановскими уровнями по электронному и ядерному спиновым квантовым числам в системах с электрон-ядерным сверхтонким взаимодействием  [c.86]

    Для водорода характерен особый случай аллотропии (аллотропия -— свойство химического элемента существовать в виде нескольких форм простых веществ). Изотопы атомов Н, О и Т образуют двухатомные молекулы На, Ог, Тг, НО, НТ и ОТ, из них молекулы Hj, Ог и Тг существуют в двух ядерно-изомерных формах спина орто-форме и пара-форме. Существование двух модификаций молекул водорода связано с различной взаимной ориентацией ядерных спинов атомов и, следовательно, с различными значениями вращательных квантовых чисел, В молекулах пара-водорода ядерные спины антипараллельны и вращательные квантовые числа четные. Орто-водород имеет параллельные спины и нечетные квантовые числа. Ядерная спиновая изомерия является исходной причиной различных магнитных, спектральных и термических свойств обеих модификаций. Пара- и орто-модификации водорода обладают различ- [c.56]


    Спиновое квантовое число ядра определяется числом протонов и нейтронов в ядре. Поскольку каждый атом характеризуется определенным числом протонов и нейтронов в его ядре, ядерный спин может меняться от [c.537]

    В одинаковом магнитном поле электронный резонанс возникает при гораздо более высокой частоте по сравнению с ядерным резонансом, поскольку магнитный момент- электрона примерно в 1000 раз больше магнитного момента протона, хотя они и могут обладать одинаковым спиновым квантовым числом. Электронный спиновый резонанс наблюдается в микроволновом диапазоне частот (приблизительно 28 ООО МГц), ядерный спиновой резонанс — при радиочастотах (10—50 МГц). [c.224]

    Чтобы понять спектроскопию ядерного магнитного резонанса, нужно познакомиться с двумя свойствами ядер — их результирующим спином, обусловленным протонами и нейтронами (обе эти частицы имеют спиновое квантовое число, равное 7г), и распределением положительного заряда. Несколько различных типов ядер изображено на рис. 8-1. Если спины всех частиц спарены, то результирующего спина нет и квантовое число ядерного спина I равно нулю. Распределение положительного заряда при этом сферическое, и, как говорят, квадрупольный момент ядра eQ (где е — единица электростатического заряда, а Q — мера отклонения распределения заряда от сферической симметрии в данном случае Р=0) равен нулю. Сферическое бесспиновое ядро, изображенное на рис. 8-1, а, является примером случая, когда [c.262]

    Таким образом, составляющая этого уровня в сумме состояний равна 2, так как экспоненциальный член равен единице. Энергии возбужденных уровней настолько велики, что соответствующими составляющими можно пренебречь, если только температура не слишком высока. Квантовое число ядерного спина водорода равно и поэтому спиновая составляющая суммы состояний равна 2. Таким образом, ядерная и электронная составляющие дают для атомного водорода сумму состояний, равную 4. Так как ядро дейтерия имеет спин, равный единице, то соответствующая сумма состояний равна 6. [c.175]

    Рассмотрим спин-спиновое взаимодействие групп СНз и СН2. Протон имеет /=72. поэтому возможные для него спиновые состояния определяются магнитным квантовым числом т, равным 72- Обозначим состояние т=-н72 буквой а, а состояние т=—7г буквой р. Возможные конфигурации ядерных спинов протонов, входящих в группу СНз, имеют следующий вид  [c.122]

    Согласно П. п., в атоме не м. б. двух электронов, характеризуемых одинаковыми наборами всех четырех квантовых чисел и, I, ГП1, ш , т. е. одну и ту же атомную орбиталь (при заданных п, I, ГП1) не могут занимать электроны в одинаковом спиновом состоянии. Поскольку у электрона возможны только два спиновых состояния, характеризуемые спиновыми квантовыми числами -Ь /г и — /г, то одну орбиталь могут занимать не более двух электронов. П. п. позволил дать совр. интерпретацию периодич. закона Менделеева он имеет важнейшее значение для объяснения атомных и молекулярных спектров, для квантовой теории тв. тела, теории ядра, ядерных р-ций и р-ций с участием элементарных частиц. Ю. А. Пентан [c.424]


    Наконец, ядерный спин также приводит к дополнительному постоянному множителю в статистической сумме ядру со спиновым квантовым числом 5 соответствует множитель (2 + 1) в выражении для Qi. [c.445]

    Начиная рассмотрение явления ядерного магнитного резонанса, мы хотим. напомнить о том, что это явление свойственно далеко не всем атомным ядрам. Только ядра со спиновым квантовым числом I, отличным от нуля, могут вызвать сигнал ядерного магнитного резонанса, или, как ми говорим, .могут быть активны в ЯМР . [c.537]

    Взаимодействие К. м. ядра с электрич. полем кристалла или молекулы приводит к появлению различных по энергии состояний ядра, соответствующих разл. ориентации ядерного спина относительно осей симметрии кристалла или молекулы. Число разрешенных ядерных ориентаций определяется ядерным магн. моментом, связанным со спином ядра, и равно 21 + , где /-спиновое квантовое число ядра (см. Ядро атомное). Низший по энергии уровень отвечает такой ориентации ядра, при к-рой положит, заряд на сплюснутом или вытянутом ядре располагается ближе всего к наиб, плотности отрицат. заряда в электронном окружении этого ядра. Резонансное поглощение энергии [c.361]

    Атомные ядра можно классифицировать по их ядерным спинам. Лишь те ядра поглощают электромагнитное излучение, у которых спиновое квантовое число М,) больше нуля. [c.308]

    Спектроскопия ядерного магнитного резонанса (ЯМР-спек-троскопия) — физический метод, основанный на регистрации индуцированных радиочастотным полем переходов между ядерными магнитными энергетическими уровнями молекул вещества, помещенного в постоянное магнитное поле. Переходы между ядерными магнитными уровнями возможны для ядер, обладающих магнитным моментом, т. е. имеющих спиновое квантовое число 1, не равное нулю. Такими свойствами обладают ядра Н, С, Р, Р, у которых 1 = /2, и др. Совокуп--чость сигналов переходов между энергетическими уровнями [c.50]

    Спин характеризуется ядерным спиновым квантовым числом /, которое может принимать значения, кратные 1/2, т. е. 7 - О, 1/2, 1, 3/2 и т. д. Все ядра с нечетными массовыми числами, а также ядра с четными массовыми числами, но имеющие нечетное число протонов и нечетное число нейронов, обладают магнитным моментом. Следовательно, ядра Н, С, N, 0, Р и 1Р имеют магнитный момент и могут давать спектры ЯМР, тогда как ядра С, %0 и не обладают магнитным моментом. Считается, что для спектроскопии ЯМР лучше подходят ядра с / - 1/2, т, е. Н, С, Р и "Р. Величину / рассчитать не удается (табл. 4.9). [c.116]

    Спин ядра характеризуется ядерным спиновым квантовым числом I, которое может иметь значения, кратные /г- Например, спин протона составляет /21 спин ядра "В - /2. По отношению к определенному направлению в пространстве, в частности по отношению к внешнему магнитному полю, спин ядра может иметь лишь определенные квантованные ориентации, причем разным ориентациям соответствует разная энергия. В соответствии с квантовой механикой число разрешенных ориентаций равно 21+1, а расстояния между отдельными энергетическими уровнями, возникающими в магнитном поле, пропорциональны его напряженности. Переходы между отдельными уровнями могут происходить при поглощении квантов электромагнитного излучения, имеющих энергию, точно соответствующую разностям между этими уровнями. Обычно образец непрерывно облучается слабым радиочастотным излучением (частота порядка сотен МГц), а напряженность [c.469]

    I — спиновое квантовое число исследуемого ядра Цы — ядерный -фактор — ядерный магнетон, N — число ядер, по которым проводится суммирование щ — расстояние между исследуемыми ядрами / и у 0 — угол между линией, соединяющей ядра I и /, и направлением приложенного магнитного поля. [c.335]

    В случае магнитного резонанса электронного спина, электронного парамагнитного резонанса (ЭПР), связь спина электрона с магнитным моментом атомного ядра приводит к весьма сложному расщеплению, которое называется сверхтонкой структурой спектра ЭПР. В ЯМР соответствующее расщепление резонансных линий, как правило, не возникает, так как вследствие быстрой спин-решеточной релаксации электронных спинов скорость переходов между спиновыми состояниями, соответствующими ориентациям спина по полю и против поля (т.е. между состояниями, характеризуемыми магнитными квантовыми числами /Иi = 1/2 и -1/2), так велика, что ядерный спин "видит" некое усредненное состояние. Однако поскольку всегда несколько больше магнитных моментов электронов ориентировано по полю, чем против поля, аналогично тому, как это ранее было показано для магнитных моментов ядер/г/, то возникающий при этом результирующий электронный магнитный момент является причиной наблюдаемых парамагнитных свойств веществ, содержащих свободные радикалы и парамагнитные ионы взаимодействие ядерного спина с электронным приводит к парамагнитному сдвигу сигналов ЯМР, и, кроме того, включается дополнительный механизм релаксации, к рассмотрению которого вернемся в разделе 1.3.7. [c.33]


    Ядерным парамагнетизмом обладают молекулы и атомы, ядра которых имеют спин, отличный от нуля. Нулевой спин имеют ядра с четным массовым числом и четным атомным номером. Целочисленное спиновое квантовое число имеют ядра с четным массовым числом и нечетным атомным номером (для Н и К / = 1). Наконец, все ядра с нечетным массовым числом обладают полуцелым спином (табл. 11.16). [c.352]

    Спектры атомов. При сообщении атому энергии изменяется по крайней мере одно квантовое число. Появляющиеся при этом сигналы относятся к видимой (800—200 нм) и рентгеновской (1 —10 А) областям спектра. В рентгеновской области спектра для аналитических целей используют сигналы, связанные с изменением главного квантового числа п. Интересные для аналитиков оптические спектры связаны в основном с изменением побочного квантового числа I (наряду с изменением и или т ). Ввиду большего разнообразия переходов оптические спектры имеют значительно большее число линий, чем рентгеновские. Если вырождение спинового момента электрона /Пз снимается внешним магнитным полем, то становятся возможными энергетические переходы с изменением т , дающие сигналы в микроволновой области (10 —10 Гц). Эти сигналы образуют спектр электронного парамагнитного резонанса (ЭПР). Атомное ядро подобно электрону может обладать собственным вращательным моменгом, ядерным спином. Воздействие внешнего магнитного поля также снимает его вырождение, что делает возможным энергетические переходы в области радиочастот (10 —10 Гц). Получающиеся при этом спектры называют спектрами ядерного магнитного резонанса (ЯМР). Оба метода, ЭПР и ЯМР, относят к резонансной магнитной спектроскопии [c.177]

    Ядро с ядерным спиновым квантовым числом I 1 также характеризуется электрическим моментом, и неспаренный электрон взаимодействует как с магнитным ядерным, так и с электрическим моментом. Градиент электрического поля на ядре может взаимодействовать с ква-друпольным моментом (такое взаимодействие изучается с помощью спектроскопии ядерного квадрупольного резонанса), и это взаимодействие влияет на энергии электронных спиновых состояний через ядерно-электронное магнитное взаимодействие как возмущение второго порядка. Влияние квадрупольного взаимодействия обычно носит сложный характер, поскольку этому взаимодействию сопутствует значительно большее магнитное СТВ. Ориентация ядерного момента квантуется как по отношению к градиенту электрического поля, так и по отношению к направлению магнитного поля. Если направление магнитного поля и оси кристалла параллельны, квадрупольное взаимодействие приводит только к небольшому смещению всех энергетических уровней на по- [c.45]

    Мёссбауэровская спектроскопия [1], которая в тексте сокращенно называется МБ-спектроскопией, регистрирует переходы, обусловленные поглощением у-лучей веществом. Эти переходы характеризуются изменением ядерного спинового квантового числа I. Условия поглощения зависят от электронной плотности вокруг ядра, а число наблюдаемых спектральных полос связано с симметрией соединения. В результате этого можно получить структурную информацию. Многие из идей и символов, используемых в данной главе, были описаны в гл. 14. [c.285]

    Метод ЯМР заключается в следующем. Ядра некоторых атомов, в том числе и водорода (протона), обладают собственным моментом количества движения — ядерньш спином, который характеризуется спиновым квантовым числом /. При вращении заряженного ядра возникает магнитное поле, направленное по оси вращения. Другими словами, ядро ведет себя подобно маленькому магниту с магнитным моментом рц. Магнитный момент квантуется, т. е. ядро с ядерным спиновым числом / может ориентироваться во внешнем однородном магнитном поле На различными способами, число которых определяется магнитным квантовым числом т/. Каждой такой ориентации ядра соответствует определенное значение энергии. Ядра некоторых элементов, имеющих спиновое квантовое число I = = /а ( Н, зф), во внешнем магнитном [c.146]

    Ядерный магнитный резонанс. Основные принципы ядерного магнитного резонанса (ЯМР) такие же, как ЭПР, а главное отличие состоит в том, что в эксперименте контролируется обращение магнитных моментов ядер. Каждое ядро характеризуется спиновым квантовым числом /, которое может принимать значения О, /2, /2,  [c.250]

    М м, обусловленный спином ядра, определяется как где - гиромагнитное отношение для ядра, а квадрат вектора I равен й /(/ + 1), где /-спиновое квантовое число ядра Ядерный М м часто вьфажают через ядерный магнетон = sh/lm ) = 5,051 10 Дж/Гс, где Шр - масса протона, тогда ц = д (ц /Л) где [c.626]

    С позиций квантово-механической модели состояния спина (электронного и ядерного) и магнитного момента /1 квантованы. В отсутствие внешнего магнигного поля состояния частицы, характеризующиеся спиновыми квантовыми числами /2, вырождены, т. е. имеют одно и то же значение энергии. При помещении частицы (рис. 11.84) в постоянное магнитное попе Щ вырождение снимается и энергии уровней с т, = +у и И, = "Я оказываются неравными. Это выражается в расщеплении уровней энергии в магнитном ноле (эффект Зеемана). Дпя электрона состояние с и , = -X (состояние Р) отвечает более низкому значению энергии, чем [c.343]


Смотреть страницы где упоминается термин Квантовое число ядерно-спиновое: [c.347]    [c.10]    [c.263]    [c.262]    [c.276]    [c.240]    [c.261]    [c.186]    [c.137]    [c.450]    [c.355]    [c.592]    [c.159]    [c.335]    [c.499]    [c.203]    [c.312]    [c.250]    [c.10]    [c.10]    [c.342]   
Физическая химия Том 1 Издание 5 (1944) -- [ c.100 ]




ПОИСК





Смотрите так же термины и статьи:

Квантовое спиновое

Квантовые числа

Квантовые числа спиновое

Ядерный магнитный резонанс спиновое квантовое число



© 2025 chem21.info Реклама на сайте