Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диполь длина

    Дипольный момент молекулы H N равен 2,9 D. Вычислить длину диполя. [c.66]

    Пример I. Длина диполя молекулы НС1 равна 0,23-10- см. Вычислить дипольный ма.мент молекулы. [c.63]

    Длина. диполя имеет значение порядка диаметра атома, т. е. 10 , а заряд электрона 1,6-10" Кл, поэтому электрический момент диполя выражается величиной порядка 10 Кл-м (кулон-метр)  [c.83]


    Расстояние I между центрами тяжести положительного и отрицательного зарядов называется длиной диполя. Длина ди-лоля характеризует степень полярности молекул. Направление [c.58]

    Неполярные и полярные молекулы. В зависимости от характера распределения электронной плотности молекулы могут быть неполярными и полярными. В неполярных молекулах центры тяжести положительных и отрицательных зарядов совпадают. Полярные молекулы являются диполями, т. е. системами, состоящими из двух равных по величине и противоположных по знаку зарядов - -q и —q), находящихся на некотором расстоянии I друг от друга. Расстояние между центрами тяжести положительного и отрицательного зарядов назывгется длиной диполя. Полярность молекулы, как и полярность связи, оценивают величиной ее электрического момента диполя х, представляющего собой произведение длины диполя I на величину электрического заряда х = Iq. [c.83]

    Дипольные моменты. молекул ГЬО и HaS равны соответственно 1,84 и 0,94 D, Вычислить длины диполей. В какой молекуле связь более полярна Указать направления дипольных моментов связей в этих молекулах, [c.66]

    Кл м. Вычислить в метрах длину диполя связи. [c.57]

    Зная экспериментальные значения электрического момента диполя, можно рассчитать полярность связей и эффективные заряды атомов. В простейшем случае двухатомных молекул можно приближенно считать, что центры тяжести зарядов совпадают с ядрами, т. е. I равно межъядерному расстоянию или длине связи. Так, в молекуле НС1 НС1 = 0,127 нм. Если бы хлорид водорода был чисто ионным соединением q равно заряду электрона), то его электрический момент диполя был бы равен [c.85]

    Диполь — полярная молекула или вообще всякая электронейтральная система, состоящая из положительных и отрицательных зарядов, распределенных таким образом, что их электрические центры не совпадают. Расстояние между полюсами диполя называется длиной диполя. Длина Д. характеризует степень полярности молекулы чем она больше, тем резче выражена полярность молекулы. Дисахариды — кристаллические углеводы, молекулы которых построены из соединенных между собой остатков двух молекул моносахаридов. Д.— составная часть растительных и животных тканей. К Д. относят сахарозу, мальтозу и др. При гидролизе каждая молекула Д. распадается на две молекулы моносахаридов. Многие Д.— ценные пищевые продукты. Применяются также в микробиологии и медицине. Диспергирование — тонкое измельчение твердых, жидких тел в какой-либо среде, в результате чего получают порошки, суспензии, эмульсии. Д. применяют для получения коллоидных и вообще дисперсных систем. Д. жидкостей обычно называют распылением, если оно происходит в газовой фазе, и эмульгированием, когда его проводят в другой жидкости. При Д. твердых тел происходит их механическое разрушение. [c.48]


    Систему двух фосфолипидных бислоев, находящихся в водном электролите, в общем случае можно представить следующим образом (рис. 9.5) В точках 2 = 0 и г = к находятся границы раздела липид/электролит, в точках г = Ь и г = к—Ь находятся плоскости, равномерно покрытые электрическими зарядами с поверхностной плотностью а и электрическими диполями с поверхностной плотностью нормальной составляющей р,. В полупространствах 2<0 и г>Ь находится диэлектрик (электрическое поле в котором отсутствует) в слое 0<г<к находится водный электролит с дебаевской длиной экранирования Распределение электрического потенциала в электролите определяется уравнением  [c.163]

    В случае негомогенного поля интенсивность является функцией расстояния Е = f (х). На диполь длиной I действует общая сила [c.421]

    Момент электрического диполя молекулы НВг равен 2,66 10 Кл м. Вычислить длину ее диноля в метрах. [c.56]

Рис. 28. Схема согласованного движения электронов в соседних атомах эквивалентного влаимолеЛствию двух эффективных мгновенных диполей длиной / (равной радиусу орбиты электрона). Рис. 28. Схема согласованного <a href="/info/525339">движения электронов</a> в соседних атомах эквивалентного влаимолеЛствию двух эффективных <a href="/info/2486">мгновенных диполей</a> <a href="/info/117410">длиной</a> / (<a href="/info/1879578">равной</a> <a href="/info/1177838">радиусу орбиты</a> электрона).
    Уравнение (XVI, 53) легко выводится на основании закона Кулона, но оно справедливо только для расстояний г, достаточно больших по сравнению с длиной диполя. [c.417]

    Длина диполя молекулы фтороводорода равна 4-10- м. Вычислить ес дипольный момент в дс-баях и в кулон-метрах. [c.66]

    Длина диполя свя.чи Н —О / = 0,315 10 м. Вычислить ее момент электрического диполя. [c.56]

    И, наконец, еще один класс сред, в которых пространственная дисперсия может играть значительную роль, — это ассоциированные жидкости, к которым, как известно, относится и вода. Хотя молекулы воды быстро и часто меняют своих партнеров по водородным связям , в каждый момент времени любая молекула воды связана с большим числом ближних и не очень ближних молекул [434]. Очевидно, что ориентация электрического диполя молекулы воды будет зависеть не только от значения электрического поля в этой точке, но также и от ориентации связанных с ней молекул воды. Так как ориентация последних, в свою очередь, зависит от напряженности электрического поля в тех точках пространства среды, где они располагаются, то теперь радиус спадения ядра К г, г ) существенно превосходит атомно-молекулярные размеры и определяется характерной длиной цепочки водородных связей в воде ( o 0,5-f-l нм) [433]. [c.154]

    Физическая природа такой немонотонности связана с осо- бенностью поведения поверхностных электрических диполей в среде с двумя механизмами экранирования, которая заключается в том, что вклад диполей в электрическое поле не зависит от характерной длины экранирования (в отличие от вклада зарядов). Следовательно, для различных механизмов экранирования эффективный поверхностный заряд одной и той же поверхности будет различен. [c.160]

    Это соотношение выполняется вполне точно для условий высоких температур и небольших давлений, когда расстояние между диполями значительно больше длины диполя. [c.136]

    С. Излучательная способность диэлектриков. Из-за малого количества свободных электронов материалы, не проводящие электрический ток, имеют низкие коэффициенты поглощения (см. п. А). Взаимодействие же между тепловыми колебаниями и излучением реализуется главным образом посредством электрических диполей, а при высоких частотах (при коротких длинах волн) начинают возбуждаться электроны в атомах. В соответствии с этим такие материалы характеризуются высокими значениями излучательных способностей в инфракрасном диапазоне при длинах волн, больших 2—3 мкм, а иногда только выше 10 мкм (MgO) (рис. 5). [c.194]

    Полярность молекулы количественно оценивается дипольным моментом а, который является произведением длины диполя, т. е. расстояния между центрами тяжести электрических зарядов, на значение этих зарядов. В таблице 7 представлены дипольные моменты некоторых двухатомных молекул. Наблюдаемые изменения диполь-ных моментов обусловлены увеличением сродства к электрону у атомов галогенов при переходе от иода к фтору. [c.32]

    Связь 51—С слабополярна (ц = 2-10"Зо Кл-м) в отличие от неполярной связи С—С. Кремний — положительный конец диполя. Длина связи 51—С (0,188—0,192 нм) близка к сумме ковалентных радиусов 51 и С и на 25% больше длины связи С—С. Энергии обеих связей близки по величине. Электроны алкильных заместителей сильно смещены к кремнию. В полидиметилсилоксанах даже при — 196°С метильные группы с необычайной легкостью вращаются вокруг связей 51—С, тогда как вращение фенильных групп в метилфенил- и дифенилсилоксанах полностью заторможено при низких температурах, а в последних не является совершенно свободным и при 20 °С [3, с. 11]. [c.463]

    Связи Si—С, соединяющие органические группы в силоксановых каучуках с основной цепью, в отличие от связей С—С слабопо-лярны — динольный момент 0,6D [33], доля ионного характера 12% [10]. Кремний является положительным концом Диполя. Длина связи Si—С 1 88—1,92 А [6, 8, 9], т. е. несколько меньше суммы ковалентных радиусов (1,94 A) и на 25% больше длины связи С—С. Энергии обеих связей близки по величине (83—86 ккал/моль) [34]. Электроны алкильных групп сильно смещены к кремнию [35, 36]. Легкость вращения вокруг связи Si—С зависит от природы заместителя метильные группы в полидиметилсилоксанах, судя по спектрам ПМР, легко вращаются вокруг этих связей даже при —196 °С [37, 38], тогда как вращение фенильных групп в метилфенил- и дифе-нилсилоксанах при низких температурах заторможено полностью [38, 39], а в последних оно не является совершенно свободным и при комнатной температуре [38]. [c.11]


    Смещение электронной п.мотиости облака в направлении одного из партнеров но связи приводит к асимметрии центров положительных и отрицательных сил, расстояние между которыми /, называемое длиной диполя связи, служит мерой ее полярности. [c.51]

    Длина дисюля молекулы HF 1= 0,4- 10 м. Вычислить ее момент электрического диполя в кулон-метрах. [c.57]

    Ароматические углеводороды масляных фракций растворяются как в парафино-нафтеновых углеводородах, так и в полярном растворителе, за счет действия однотипных дисперсионных сил. В последнем случае при контакте с неполярной частью молекул растворителя ароматические углеводороды растворяются в нем вследствие дисперсионного притяжения при соприкосновении с функциональной группой в молекулах этих углеводородов индуцируется дипольный момент и растворение происходит в результате ориентации диполей. Следовательно, преимущественное растворение ароматических углеводородов в шолярном растворителе объясняется большей энергией притяжения диполей по сравнению с энергией взаимодействия неполярных соединений и, кроме того, наличием дисперсионных сил между неполярной частью молекул распворителя и молекулами этих углеводородов. В связи с вышеизложенным растворимость ароматических углеводородов в полярных растворителях при прочих равных условиях уменьшается по мере увеличения длины боковых цепей и усложнения их структуры (рис. 6), так как при этом затрудняются индуцирование в их молекулах дипольного момента и ассоциация с молекулами растворителя [5]. В этом случае растворение является в основном следствием дисперсионного взаимодействия молекул. Повышение степени цикличности ароматических углеводородов приводит к увеличению их растворимости в результате большей поляризуемости таких м олекул, и энергия притяжения диполей превышает энергию дисперсионного цритяжения молекул. [c.49]

    Увеличение стягивания иопов в результате их поляризации приводит к тому, что длина диполя оказывается меньше межъядерного расстояния (так, длина диполя в молекуле КС1 равна 167 пм, в то время как межъядерное расстояние составляет 267 пм). Это различие особенно велико у водородосодержащих соединений. Если пренебречь размерами иона водорода, то в предположении чисто ионной связи расстояние между ядрами во- дорода и галогена должно равняться г -. Однако < г -для всех Э, так, Гс,-= 181 пм, а н- i = 127 пм. Это означает, что в отличие от других катионов протон проникает внутрь электронной оболочки аниона. Внедрившись в анион, протон оказывает сильное поляризующее действие, что приводит к резкому уменьшению полярности водородных соединений (по сравнению с аналогичными соединениями других катионов). Поляризационный же эффект приводит к тому, что длина диполя НС1 составляет -всего 22 пм. Наконец, проникновение протона внутрь аниона обусловливает уменьшение деформируемости последнего. [c.113]

    Для всех гетеронуклеарных молекул можно отметить характерную особенность электронная плотность в них распределена несимметрично относительно обоих ядер. При таком распределении электронной плотности химическую связь называют полярной или точнее полярной ковалентной связью, а молекулы полярными. Среди молекул гидридов у НР особенно заметно несимметричное распределение заряда (рис. 31). Не только несвязывающие молекулярные орбитали 1а , 2а и 1л,1 практически целиком сосредоточены вокруг ядра фтора, но и на связывающей молекулярной о-орбитали электронная плотность благодаря большому различию в эффективных зарядах ядер водорода (1) и фтора (5.20) смещена в сторону последнего. Вследствие этого электрические центры тяжести положительных зарядов ядер и отрицательных зарядов электронов не совпадают, и в молекуле возникает постоянный электрический диполь — система двух равных по величине и противоположных по знаку зарядов +<7 и —д, разде-. ленных расстоянием I, называемым длиной диполя (рис. 32). Взаимодействие молекулы с электрическим полем будет зависеть от величины вектора а — электрического дипольного момента молекулы [c.84]

    Ориентационное взаимодействие (эффект Кьезома). Рассмотрим взаимодействие двух полярных молекул с одинаковыми дипольными моментами. При сближении они ориентируются так, чтобы энергия системы стала минимальной. На рис. 61, а показано расположение диполей в хвост . Пусть расстояние между центрами диполей з намного больше длины диполя I. Заряд полюса диполя обозначим через е. Энергию ориентационного взаимодействия можно представить как сумму кулоновского притяжения и отталкивания зарядов полюсов диполей  [c.132]

    Напряженность электрического поля отражает энергию падающего светового потока. В соответствии с электромагнитной теорией интенсивность света (плотность потока энергии) пропорциональна квадрату амплитуды волны, излучаемой электрическим диполем. В свою очередь амплитуда волны пропорциональна квадрату частоты колебаний диполя. Таким образом, интенсивность рассеянного света пропорциональна частоте колебаний диполя в четвертог степени или обратно пропорциональна длине волны в четвертой степени Отсюда вытекает, что лучи с меньшей длиной волны сильнее рассеиваются. Прн рассеянии белого света дисперсной системой с мелкими частицами рассеянный свет оказывается голубым, а проходящ1П1 — красноватым, так как синие лучи имеют дл(гну волны меньше, чем красные. [c.255]

    Даже н отсутствие тушителя могут наблюдаться нестационарные явления, связанные с релаксацией растворителя. Молекула в возбужденном состоянии имеет другую геометрию, другой диполь-ный момент но сравнению с молекулой, находящейся в основном состоянии. Переход в возбужденное состояние происходит практически мгновенно, а растворителю нужно время для того, чтобы иерестроитг ся в наиболее энергетически выгодную конфигурацию. Экспериментально это явление проявляется в том, что чем больше прошло времени после вспышки, тем дальше сдвинут спектр испускания и красную область. Так, например, для 4-аминофталимида в н-пропаноле сдвиг достигает 50 нм и время релаксации — десятков наносекунд при температуре —70° С. В связи с этим времена жизни, измеренные па разных длинах воли, отличаются более чем в 2 раза. Релаксация происходит примерно по экспоненциальному закону. [c.97]

    Ван-дер-Ваарден (см. ссылки 10 и 97) установил, что дисперсии газовой сажи в алифатических углеродах стабилизуются ароматическими соединениями. Особенно это относится к ароматическим ядрам, связанным с длинной алкильной цепью. Согласно Ван-дер-Ваардену, поверхности частиц газовой сажи плотно покрыты полярными группами С—О. Такого рода диполи притягивают поляризованные молекулы или же молекулы, способные поляризоваться. Соответственно с эффектом Керра, ароматические молекулы проявляют еще более тесное взаимодействие с полярными группами С—О. Благодаря пространственному препятствию , т. е. благодаря приданию устойчивости путем сольватации или защитного коллоидного действия алкильные боковые цепи не дают частицам близко подходить друг к другу. При этом следует отметить, что эффективность стабилизации возрастает по мере либо увеличения длины боковой алкильной цепи, либо увеличения числа боковых цепей. [c.106]

    Исследования X/4-излучаюшцх диполей, на основе столбчатых кристаллических фуллереновых структур, проведенные в 8 мм диапазоне длин волн при азотных температурах показали, что их добротность почти на порядок больше, чем у пленочных ВТСП структур  [c.168]


Смотреть страницы где упоминается термин Диполь длина: [c.78]    [c.63]    [c.168]    [c.132]    [c.395]    [c.445]    [c.126]    [c.40]    [c.81]    [c.62]    [c.227]    [c.75]    [c.255]    [c.163]    [c.40]    [c.81]   
Общая химия в формулах, определениях, схемах (1996) -- [ c.58 ]

Общая и неорганическая химия Изд.3 (1998) -- [ c.97 ]

Общая химия в формулах, определениях, схемах (0) -- [ c.58 ]

Общая химия в формулах, определениях, схемах (1985) -- [ c.58 ]

Общая химия в формулах, определениях, схемах (0) -- [ c.58 ]

Неорганическая химия (1969) -- [ c.92 ]

Общая и неорганическая химия (1981) -- [ c.83 ]

Общая химия Изд2 (2000) -- [ c.39 ]

Основы общей химии Т 1 (1965) -- [ c.98 ]

Курс общей химии (0) -- [ c.47 ]

Курс общей химии (0) -- [ c.47 ]

Основы общей химии том №1 (1965) -- [ c.96 ]

Предмет химии (0) -- [ c.47 ]




ПОИСК





Смотрите так же термины и статьи:

Диполь

Диполь длина электрический момент

Длина диполя, дипольный момент и полярность молекул

Энергии связен, длины связей, диполи



© 2025 chem21.info Реклама на сайте