Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ванадий как катализатор при реакции при ароматизации

    Например, отмечалось увеличение скорости реакции дегидрогенизации циклогексана, этилциклогексана, а также дегидрогенизации и дегидратации спиртов в первые часы работы катализаторов с активным металлическим компонентом [65, 101—104], Временное увеличение активности катализатора отмечалось в процессе ароматизации парафиновых углеводородов (14, 24, 105]. При крекинге углеводородов на алюмосиликатных катализаторах отмечалось сохранение каталитической активности вплоть до 5—10% увеличения веса катализатора [106, 107]. Отсутствие отравляющего действия углистых отложений на катализаторе в начальных стадиях угле-накопления отмечалось и другими авторами [108]. Сохранение специфики природы различных катализаторов (медь, силикагель, кварц, а также медь, серебро, золото, железо, кобальт, никель, окись ванадия на силикагеле) после сильного обугливания было отмечено в случае пиролиза бензола (50, 56, 59]. В ряде случаев отмечено изменение специфичности катализатора по мере обугливания. Например, изменяется соотношение между выходами олефинов и арп-матики по мере обугливания катализатора [24, 105]. Двуокись титана, проявляющая в свежеприготовленном состоянии дегидрирующие свойства в реакции с изо-пропиловым спиртом, становится типично дегидратирующим катализатором после обугливания в ходе дегидрогенизации [109]. То же наблюдается с окисью иттрия [ПО, 111] и с некоторыми другими катализаторами. [c.286]


    Механизм каталитических превращений алканов в условиях дегидроциклизации на окисных ванадиевых катализаторах, нанесенных на глинозем, тщательно изучали Платэ и Тарасова [131—133]. На трехокиси ванадия реакция ароматизации начинается при более высокой температуре, чем реакция образования олефинов, но при этом она имеет больший температурный коэффициент. Обе названные реакции, по мнению авторов, протекают параллельно и на различных активных центрах катализатора. Таким образом, образующиеся олефины не являются промежуточными соединениями, а поэтому имеют одинаковые с исходными алканами возможности на дальнейшее превращение в арома-тику. [c.236]

    Из рассмотрения изложенного выше материала следует, что число окислов, активных в реакции каталитической ароматизации парафиновых углеводородов, чрезвычайно велико, а число возможных комбинаций, ведущих к получению активного смешанного катализатора, неисчислимо. В настоящее время уже накоплен значительный экспериментальный материал по получению активных катализаторов на базе главным образом окислов хрома, ванадия и молибдена, причем в качестве носителя наиболее активным окислом следует признать окись алюминия. Однако еще совершенно недостаточно число работ по выяснению зависимости каталитических свойств смешанных катализаторов от физических свойств активного окисла и окисла-носителя, а также зависимости этих свойств от точно и количественно разработанных методов приготовления катализаторов. [c.56]

    Кох [76] исследовал ароматизацию гептеновой фракции. В качестве катализаторов были использованы окислы ванадия и хрома на окиси алюминия, применялись температуры от 440 до 530° С и время от 8 до 40 сек. Самый высокий выход ароматики, главным образом толуола (37%), был получен при 510° С и 40 сек. в присутствии пяти-окиси ванадия. Одновременно с ароматизацией протекают реакции расщепления и конденсации, что отравляет катализатор. [c.55]

    В процессе дальнейшего изучения, путем многократной фракционировки и окисления отдельных, отвечающих индивидуальным соединениям, фракций, было установлено содержание в бензине н-понтана, к-гексана, н-гептана, 3-метилоктана, к-ио-нана, пентена-1, пентена-2, гексена-2, 3,3-диметилпентона-1, гентена и октена-2. Нафтены обнаружены не были. Ароматических углеводородов оказалось очень мало бензола 8% во фракции 72—87°, или 0,1% от всего бензина, толуола — 16,5%i во фракции 103,5—117°, или 0,4—0,5% от всего бензина. Кох, основываясь на цитированных выше исследованиях Б. Л. Молдавского с сотр., Б. А. Казанского и А. Ф. Платэ, а та1> же данных американских патентов № 351078 и 382747 по каталитической ароматизации алифатических углеводородов над окисями ванадия и хрома, подверг исследованию в этом отношении ряд фракций синтина. Гептеи-гептановая фракция (с т. кии. 92— 95°) подвергалась ароматизации над окисями ванадия и хрома в пределах 400—530°. Прп оптимальных условиях выход ароматических углеводородов в продуктах реакции составлял 55% от исходного, причем основным углеводородом был толуол. Катализатор быстро терял активность, но легко регенерировался продуванием воздуха. [c.199]


    К числу первых сообщений по окислительному дегидрированию углеводородов относятся сведения [1] о возможности получения этилена путем взаимодействия этана с кислородом над катализатором из окислов железа, хрома, меди и калия, а также получения бутадиена-1,3 при реакции н-бутана с хлором и кислородом. В 1953—54 гг. при исследовании влияния добавок воздуха на дегидрирование и каталитические превращения дипен-тена в присутствии окислов ванадия было установлено [2], что кислород с помощью катализатора связывает выделяющийся водород и ускоряет превращение исходного углеводорода. В сходных условиях из л-цимола. с удовлетворительным выходом получается п-метил-с -метилстирол. На платиновом и палладиевом катализаторах, а также на окисных хромовых и никелевых контактах [3] окислительное дегидрирование парафинов, нафтенов, циклоолефинов, алкилбензолов и других углеводородов сосуществует с контактным окислением, а иногда и с процессами изомеризации, циклизации и ароматизации исходных и промежуточных веществ. [c.45]

    Реакции каталитической ароматизации имеют большое значение в современных методах переработки нефти. Они лежат в основе получения толуола и ароматизованных бензинов. Катализаторы, благоприятствующие реакциям циклизации парафинов, относятся к различным группам периодической системы, как, например, хром, молибден (VI группа периодической системы элементов), ванадий (V группа), титан, церий, цирконий (IV группа). Все эти окислы одновременно являются к катализаторами для реакции, дегидрогенизации. Для дегидроциклизации среди них лучшими являются катализаторы из аморфной окиси хрома, нанесенной на окиеъ алюминия с добавками различных активаторов (окислов металлов) и иногда небольших количеств щелочей. Готовые катализаторы обычно активируют прокаливанием в струе водорода при температуре 500—525°. [c.109]

    После первых же исследований ароматизации парафиновых углеводородов стала вырисовываться практическая ценность этой реакции, открывавшей возможности промышленного получения разнообразных ароматических углеводородов. Поэтому Б. А. Казанский с группой сотрудников в 1938—1939 гг. предпринял широкое обследование большого числа (свыше 30) катализаторов, состоящих из разных окислов (хрома, ванадия, урана, тория, алюминия и др.). Были получены значительные выходы ароматических углеводородов (56, 58, 60, 62, 64, 66] из фракций синтина, состоящих из алифатических углеводородов. Эта серия работ явилась одним из первых исследований по подбору катализаторов ароматизации и позволила выяснить роль отдельных окислов и большое влияние носителей (окись алюминия, силикагель, активированный уголь, прокаленная окись хрома) в формировании дегидроциклизующего катализатора. При изучении ториевых катализаторов (на окиси алюминия и активированном угле) было обнаружено промотирование гетерогенного катализатора продуктом каталитического превращения — образующимся в процессе работы коксом. [c.20]


Смотреть страницы где упоминается термин Ванадий как катализатор при реакции при ароматизации: [c.144]    [c.66]    [c.506]    [c.228]    [c.222]    [c.482]    [c.144]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.203 ]




ПОИСК





Смотрите так же термины и статьи:

Ароматизация

Ароматизация, катализаторы для

Ванадий как катализатор при реакции

Ванадий катализаторы

Ванадил-ион, реакции



© 2024 chem21.info Реклама на сайте