Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Медь как материал следов

    Выявленная закономерность позволяет оценить запас вязкости металла при низких температурах путем непосредственного сравнения с вязкостью его при комнатной температуре ( + 20 °С). На полученных кривых для некоторых металлов и сплавов отмечается порог хладноломкости — температурный интервал, в котором резко снижается ударная вязкость металла. Наиболее отчетливо порог хладноломкости выявляется для ферритных и мартенситных сталей. Ударная вязкость ряда металлических материалов понижается плавно, а для отдельных металлов (медь, алюминий) она сохраняет достаточно высокое значение вплоть до температур жидкого гелия (—270 °С). Следует учитывать, что на вязкость материала в значительной мере влияют такие факторы, как кристаллическая структура, термообработка, загрязнения, а также вид прилагаемой нагрузки. На рис. 44 показана зависимость ударной вязкости от температуры для некоторых металлов. [c.133]


    По химизму протекающих процессов выделяют следующие разновидности обжига 1) окислительный обжиг — применяется для перевода сульфидов металлов в оксидную форму, иногда с получением окускованного материала (производство меди, цинка, никеля, свинца, сурьмы и т. д.) 2) сульфатирующий обжиг — применяется для окисления сульфидов, содержащихся в руде, до сульфатов (производство цинка и т. д.) 3) окислительно-восстановительный обжиг — отличается от окислительного введением в шихту некоторого количества угля, что приводит к образованию низших оксидов и облегчает выделение в газообразном состоянии Ц енных составляющих, а также примесей, высшие оксиды которых слабо летучи  [c.24]

    Применение. Алюминий второй (после железа) металл по объему производства и применения в технике. Используют как чистый алюминий, так и сплавы. Сплав дюралюминий (сокращенно дуралюмин, дюраль), содержащий, кроме алюминия, 4% (масс.) Си, 1,5% Mg, 0.5% Мп-основной конструкционный материал а самолетостроении. Большое количество алюминия идет иа изготовление проводов. Следует заменять (те это возможно) медные провода алюминиевыми, так как медь значительно более дорога и дефицитна. [c.355]

    Основное содержание справочника составляют таблицы коррозионной стойкости. В первой графе таблиц приводится наименование материала, процентный состав его (по массе) и марка отечественного материала, близкого к нему по составу (указывается в скобках). Если материал выпускается промышленностью, то указывается только его марка, а состав определяется соответствующими ГОСТами. Условия предварительной термической или механической обработки материалов, если они известны, указываются в примечании или рядом с маркой материала. Материалы располагаются в следующем порядке. Вначале идут металлические материалы, которые начинаются с железа и железных сплавов как наиболее широко применяющиеся в практике. Затем следуют в алфавитном порядке наиболее распространенные металлы и сплавы алюминий и его сплавы, магний и его сплавы, медь и ее сплавы, никель и никелевые сплавы, титан и титановые сплавы. После этого в алфавитном порядке размещаются другие металлы и их сплавы. В последней части таблиц приводится химическая стойкость неметаллических материалов (по алфавиту). Скорость коррозии металлов и сплавов характеризуется потерей массы ( , г/м .ч) или глубинным показателем коррозии (/г , мм/год). Длительность коррозионных испытаний приводится в примечаниях или в отдельном столбце таблицы. Продолжительность испытания оказывает влияние на скорость коррозии (в частности, на среднюю скорость коррозии). Как правило, при более длительных испытаниях средняя скорость коррозии становится меньше. Большое влияние на скорость коррозии могут оказать перемешивание среды и примеси. В таблицах, по возможности, отмечены эти особенности. [c.4]


    Составы травильных растворов, главным образом для глянцевого травления, изменяются в зависимости от рода травящегося материала (состав медных сплавов) и от характера предварительной его обработки (вальцованный или литой материал). Для травления меди и латуни перед покрытием их другими металлами следует применять разбавленные водой растворы кислот. [c.373]

    Вследствие высокой стоимости платины часто приходится вместо платиновых электродов применять электроды из менее ценных металлов или сплавов. Однако анод всегда делают из платины, так как в процессе электролиза анод из других металлов может растворяться. Следует все же заметить, что найти равноценный платине по свойствам материал для электродов до сих пор не удалось. Электроды из меди сравнительно легко окисляются кислородом воздуха, что сопряжено с изменением их массы и понижением точности определения. [c.422]

    В обозначениях марок меди буква М обозначает названия материала — медь. Цифра, следующая за этой буквой, условно определяет содержание примесей в меди. Например, медь М1 содержит не более 0,1% примесей. Чем больше примесей, тем выше номер марки меди и тем хуже ее теплопроводность. Все примеси в меди снижают ее теплопроводность. [c.56]

    При достаточном количестве исследуемого материала следует выполнить дробное обнаружение меди полумикрометодом. Для этого к 0,5—1 мл исследуемого раствора прибавляют избыток концентрированного аммиака, перемешивают, нагревают до кипения и фильтруют. Фильтрат делят на две части. К одной добавляют 2 капли фенолфталеина и уксусную кислоту до исчезновения окраски индикатора, затем 8 капель ферроцианида калия. Появление красно-коричневого осадка свидетельствует о присутствии меди. К другой прибавляют 2 н. раствор азотной [c.156]

    Обработку солями меди проводят следующим образом материал, окрашенный прямыми красителями стандартным методом, тщательно прополаскивают и затем обрабатывают в ванне раствором, содержащим 1—3% сульфата меди и 2—3% уксусной кислоты (30%-ной) при 80—90°С в течение 30 мин. [c.42]

    Нагрев проводников в значительной степени зависит от природы материала, из которого они изготовлены. Лучший технический проводник — медь, которую следовало бы применять во всех электрических машинах и установках. Однако, сделать этого нельзя из-за ее дефицитности. Поэтому приходится применять проводниковые материалы с несколько худшими электрическими характеристиками — алюминий и его сплавы (сталеалюминиевые провода и др.). Медь же в основном применяют там, где это вызывается особыми техническими условиями в наиболее ответственных частях аппаратов, машин и приборов. Большинство проводников многоамперных токопроводов печей выполнено из меди. [c.85]

    Этот метод не может быть применен для ионита, насыщенного медью, по следующим причинам регенерация медного обменного материала не является обменом в нейтральной среде, а в кислой — с изменением pH. Медь, которая хорошо выделяется при pH — = 10, образует основную соль при pH = 7. Даже при низкой концентрации кислоты проблема просачивания обострена, так как прядильная кислота, применяемая для регенерации, уже содержит медь. [c.360]

    Механические свойства и другие характеристики FH5 таковы, что этот материал следует использовать в тех объектах, в которых первым требованием является высокая прочность и можно примириться с плохой коррозионной стойкостью. Если условия не являются крайне агрессивными и можно рассчитывать на удовлетворительную стойкость, то следует применить защитное анодирование или окраску. Изделия из плакированного металла ИС 15 сохраняют коррозионную стойкость, близкую к стойкости- плакировочного сплава при условии, что повторяющиеся термообработки не привели к чрезмерно большой диффузии меди в покрытие. Сплав Н15 довольно часто используется для изготовления деталей машин путем механической обработки. Однако это [c.80]

    Горелка для сварки бронзы подбирается так же, как и для сварки меди. В качестве присадочного материала следует применять латунь или бронзу с присадкой фосфора, алюминия или марганца. Флюсы такие же, как и при сварке меди. [c.546]

    Применение. Алюминий второй (после железа) металл по масштабу применения в современной технике. Ежегодно его производят миллионы тонн. Применяют как чистый алюминий, так и сплавы. Наиболее употребим дюралюминий (сокращенно дюраль), содержащий, кроме алюминия, - 4% Си, - 1,5% Mg, - 0,5% Мп. Это основной материал самолетостроения. Большое количество алюминия идет на изготовление проводов. Следует заменять (где это возможно) медные провода алюминиевыми, так как медь значительно белее дорога и дефицитна. [c.343]

    Для проведения электродиализа применяют различной конструкции аппараты, называемые электродиализаторами. Основой таких аппаратов является трехкамерная ячейка, среднее пространство которой отделено от крайних электродных камер мембранами. Подлежащий очистке коллоидный раствор помещают в среднюю камеру, в то время как крайние камеры наполняют водой. Мембрана, расположенная у отрицательного электрода называется — катодной, а у положительного — анодной. Следует обращать большое внимание на выбор материала для анода, чтобы избежать анодного растворения и переноса ионов металла через анодную мембрану в среднюю камеру. В связи с этим в качестве анода обычно употребляют платину или графит. В качестве катода могут служить различные металлы — железо, никель, медь. [c.223]


    С увеличением К коэффициент термического расширения материала снижается, что и наблюдается для нефтяных коксов, имеющих игольчатую структуру. Аналогично для обеспечения электро-илн теплопроводности в наполненной системе более желательно иметь частицы игольчатой структуры с высоким значением К. Например, при введении частиц меди, у которых отношение длины I к диаметру йЩй) =К=20, степени наполнения ею 5% объемн. проводимость, полиэтилена возрастает в 1,5 раза, а при тех же условиях, но при // /=50 — в 5 раз. Следует ожидать, что при наполнении электродных масс углеродными частицами, имеющими Повышенное отношение Цй, многие свойства готовых углеграфитовых изделий улучшатся. [c.84]

    Высокой коррозионной стойкостью отличается стабилизированная алюминиевая латунь следующего состава 76%) меди, 2% алюминия, 0,05% мышьяка. Трубки, изготовленные из этого материала, развальцованные в трубных решетках из фосфористой бронзы (96,5% медн, 4,3% олова, 0,2% фосфора), показали в 2 раза более высокую коррозионную стойкость по сравнению с стабилизированной оловянистой латунью [188]. [c.155]

    Во время обжатия в пламени в момент размягчения стекла нельзя разогревать медную трубку до красного каления, так как возможно спаивание меди со стеклом. Обжимать следует постепенно, не торопясь, следя за тем, чтобы размягченное стекло плотно вошло в углубления резьбы медной трубки. По окончании обжатия заготовку в горячем состоянии, не вскрывая стеклянную трубку, помещают в печь для отжига, разогретую до температуры отжига данного стекла. После остывания в печи один конец стеклянной трубки отрезают, а медную трубку вытравляют азотной кислотой. По полученной в стеклянной трубке резьбе всегда можно изготовить втулку с наружной резьбой из любого материала (металла, тефлона и др.). [c.89]

    Жесть, а также листовую латунь, медь и алюминий режут ножницами (рис. 148). Для отрезания сравнительно толстого материала следует пользоваться портняжными или кровельными ножницами, для тонкого — обыкновенными. Трудности, возникающие при резании, зависят прежде всего от необходимости прикладывать к ножницам тем большую силу, чем толще и жестче металл. Кроме этого, край, отрезаемый у жести, мешает резанию, поэтому его приходится по большей части отгибать рукой (рис. 150, В). Только очень узкая отрезаемая полоска самостоятельно без посторонней помощи изгибается и не препятствует дальнейшему движению ножниц (рис. 150, А). Резать значительно легче, если ножницы зажать в тиски, как показано на рисуке 150, С. Резание усложняется, если лезвия ножниц не- [c.192]

    Электролизер [123], показанный на рис. 336, работает при 95 —115° лучше всего, если обогревание производят паром. Сосуд и большинство других частей прибора изготовляют из стали, монельметалла или меди материал сваривают или плотно спаивают серебряным припоем мягкий припой непригоден. В центре плотно закрывающей крышки установлен массивный никелевый стержень, служащий анодом, который окружен диафрагмой в виде проволочной сетки (из монельметалла, с величиной отверстий около 2 мм). Катод из перфорированной листовой стали установлен в наружном пространстве. Для вмазывания и изоляции электродов, а также для уплотнения затворов лучше всего служит паста из aF2 и тефлона в крайнем случае можно применять также портланд-цемент. Поскольку расплав легко разбрызгивается и выползает, отводящие трубки должны быть достаточно широкими (6 мм). Подводы, вентили и ловушки для сбора и конденсации фтора следует изготовлять из меди или монельметалла. [c.591]

    Из приведенного экспериментального материала следует, что как но химическому, так и по фазовому составу накипи и шламы явля.стся многофазными осадками, в которых найдены окислы железа (гематит и магнетит), различные фосфаты кальция, медь, кальцит, ангидрит, гидроокись кальция, серпентин и другие вещества. Но почти во всех случаях рентгенограммы этих отложений отвечают механической смеси главным образом двух основных кристаллических фаз окислов железа с решеткой магнетита или гематита и фосфата кальция с решеткой минерала апатита. Эти фазы присутствуют в шламах и накипях в различных количественных отношениях и с разными размерами частиц, от аморфного до рентгенокристаллического состояния . Кроме того, кристаллооптическим методом в некоторых исследуемых образцах установлено наличие частиц, подобных сферолитам. [c.265]

    При выборе клея для конкретного материала следует прежде всего проверить, не ухудщает ли он свойства этого материала. Так, при склеивании металлов клей не должен вызывать их коррозию. Поэтому pH клеев, рекомендуемых для склеивания металлов (кроме благородных металлов и титановых сплавов), должен быть близок к 7 (в соответствии с ГОСТ 9.902—81 от 6 до 8,5). Клеи должны содержать минимальное количество ионов С1 и 804 (как правило, их содержание ограничивается сотыми долями процента для С1 —не более 0,02 и 504 — не более 0,05). Клеи для склеивания серебра и меди не должны содержать серу, поскольку она вызывает их коррозию. При склеивании меди необходимо учитывать, что полиуретановые клеи имеют к ней хорошую адгезию, в то время как эпоксидные клеи — плохую [249]. [c.199]

    Газовая сварка чугунных деталей сплавами меди производится следующим образом. Металл в месте сварки очищают от грязи, ржавчины, масла или жира. Зачистку лучше всего производить пескоструйным аппаратом. Скос кромок производят под углом 90—120°. Кромки чугунной детали нагревают докрасна, а затем на них начинают наплавлять присадочный материал, который при достаточном подогреве быстро растекается по поверхности основного металла и облуживает ее. После того как поверхность хорошо облужена и вижние слои завариваемой трещины или раковины сое динились, присадочным материалом заполняют весь шов. Сварку производят короткими участками, применяя правую сварку. В качестве присадочного материала применяют специальную латунь или монель-металл. [c.944]

    Штрёль [311] применил медь, активированную следующим образом. Палочки окиси меди длиной 0,5—1 см и диаметром 0,2 мм подвергают многократно чередующимся процессам восстановления в токе водорода и окисления в токе воздуха. В результате материал приобретает губчатую структуру, благодаря чему сильно возрастает величина его поверхности. Рабочая температура при очистке 200°. 2 кг наполнителя в состоянии связать 175 л кислорода. Его содержание может быть понижено приблизительно до 1 ч. на млн. [c.176]

    В работах Саккоии с оотрудниками [27] до казывается наличие тетраэдрической конфигурации для хелатов меди, никеля, кобальта с разветвленными замещенными у азота алицилалиминами. В наших соединениях у атома азота находится фенилэтильный радикал и вполне вероятно тетраэдрическое строение хелата. Из литературного материала следует, что аномальный ход кривых ДВ хелатов не доказывает еще [c.436]

    Наиболее легко давильной обработке в холодном состоянии подвергаются алюминий и его сплавы, для некоторых сплавов может пог )ебоваться межоперационный отжиг. Медь, углеродистая и нержавеющая стали, а также никелевый сплав при деформации при комнатной темпфатуре в зависимости от толщины обрабатываемого материала вьщерживают определенную степень деформации. В связи с этим заготовку следует подвергать межоперационной термической обработке. Обкатка без промежуточной термической обработки возможна при соответствующем подогреве заготовок сравнительно небольшой толщины непосредственно на обкатной машине в процессе обработки. [c.140]

    Мнение о превосходстве свойств меди как материала для стенок ввиду значительной теплопроводности меди не всегда я вляется о правданным, как это явствует из следующего примера. [c.156]

    Все рассмотренные выше в этом разделе примеры описывали процессы, происходящие при электролизе с использованием инертного электрода. Однако, если использовать металлические ше1а-роды, то сам материал электрода может принимать участие в окислительно-восстановительной реакции, Так, при электролизе сульфата меди с медным анодом происходят следующие процессы катод анод [c.178]

    Коэффициент теплопроводности X. Теплопроводность в зависимости от материала изменяется в широких пределах. Различные материалы имеют следующие значения коэффициента теплопроводиости X (в ккал/(м-ч-°С) медь — 333, алюминий — 195, латунь — 94,5, малоуглеродистая (мягкая), сталь — 57, кремнистая бронза — 28, нержавеющая сталь — 13,1, 85%-пая магнезиальная изоляция — 0,05, строительный кирпич — 0,06, огнеупорный кирпич — 0,74—1,61, шерсть — 0,087—0,149. В литературе имеется много данных о теплопроводности. Влияние коэффициента теплопроводности на процесс теплопередачи наглядно показано в уравнениях (122), (123). [c.160]

    Следует отметить, что для всех материалов наблюдается уменьшение размера капель при повышении времени выдержки и температуры, что связано с частичным испарением меди, а также с шропиткой материала подложки. [c.142]

    Самой серьезной из новых разработок следует считать создание под руководством инженера В.Д. Белогорского группы антифрикционных материалов — обожженных и графитированных соответственно марок АО и А Г. Они были изготовлены по технологии, близкой к технологии материала МГ-1, но имеют более тонкую структуру, обладают очень высокой прочностью и износостойкостью. Затем была разработана и технология пропитки таких материалов жидкими металлами и сплавами — оловом, медью, бронзой, баббитами, серебром, что резко расширило область их применения. Производство новых материалов сразу же освоили на МЭЗе. Потребителями стали многие направления машиностроения, например судостроение. Инженером Юдицким был оперативно издан объемный справочник по применению антифрикционного графита в судостроении. [c.43]

    На базе п.ланетарной модели рассеяние а-частиц объясняется следующим образом. Если бы а-частица не взаимодействовала с ядром, она пролетела бы от него на некотором расстоянии П, называемом прицельным расстоянием (пунктирная прямая на рис. 9). Однако в результате одноименности зарядов ядро отталкивает -частицу, которая начинает двигаться по гиперболе, отклонившись на угол в от первоначального направления. При этом влиянием электронов на траекторию а-частицы можно пренебречь, так как масса электрона очень мала по сравнению с ядрами атома гелия. Величина угла тем болыпе, чем больше 2 и чем меньше П и кинетическая энергия летящей а-частицы. Из опытов по рассеянию а-частиц Резерфордом бьша определена величина положительного заряда ядер 2 различных химических элементов. Оказалось, что положительный заряд ядра равен приблизительно половине атомной массы рассматриваемого элемента (материал фольги). Впоследствии Чэдвик (1920) усовершенствовал опыты по рассеянию а-частиц ядрами атомов различных химических элементов. На примере атомов меди, серебра и платины он показал, что заряд ядра 2 численно равен порядковому номеру элемента в Периодической системе элементов Д.И.Менделеева. [c.24]

    Примером более слол<ного анализа является определение примесей в металлическом германии свойства этого материала, применяющегося, например, в качестве полупроводника для детекторов, чрезвычайно сильно зависят от присутствия очень малых количеств примесей других элементов. Для определения микропримесей редкоземельных элементов, сурьмы, молибдена, меди и др. поступают следующим образом . В ядерный реактор вводят испытуемый образец германия и чистый образец с известным количеством введенных примесей. После облучения образцы растворяют, вводят в качестве носителей-коллекторов нерадиоактивные изотопы определяемых элементов. Германий отгоняют в виде легколетучего тетрахлорида, а остаток подвергают разделению химическими методами, осаждая отдельно группу редкоземельных элементов, отдельно сурьму, медь и другие определяемые элементы. Активность выделенных фракций сравнивают с активностью фракций эталона и на этом основании вычисляют содержание микропримесей в испытуемом образце. Таким методом удается определить миллионные доли процента примесей редкоземельных элементов— до З-Ю / о сурьмы, молибдена и др. [c.21]

    Отбор химических элементов — этого подвижного строительного материала эволюционирующих систем — выступает прежде всего как весьма красноречивый научный факт. Ныне известно 107 химических элементов. Есть основания полагать, что большинство из них попадает в те или иные живые организмы и так или иначе участвует в жизнедеятельности. Однако основу живых систе.ч составляют только шесть элементов, давно получивших наименование органогенов. Это углерод, водород, кислород, азот, фосфор и сера, общая массовая доля которых в организмах составляет 97,4 % За ними следуют 12 элементов, которые принимают участие в построении многих физиологически важных компонентов биосистем. Это натрий, калий, кальций, магний, железо, кремний, алюминий, хлор, медь, цинк, кобальт. Их массовая доля в организмах равна примерно 1,6%. Можно назвать еще 20 элементов, участвующих в построении и функционировании отдельных узкоспецифических биосистем (например, водорослей, состав которых определяется в известной мере составом питательной среды). Их доля в организмах составляет около 1 %. Участие всех остальных элементов в построении биосистем практически не зафиксировано. [c.194]

    Всякий источник электрической энергии — элемент и потребитель энергии — ванна, как это следует из выражения (У.13), характеризуются разностью электродных потенциалов и внутренним сопротивлением. Поэтому процессы зарядки и разрядки аккумулятора нельзя считать обратимыми чем больший ток проходит через электрохимическую систему, тем больше теряется напряжение. Э. д. с. элемента и напряжение на клеммах электролизера зависят также от материала электродов и от состава и концентрации потенциалобразующих ионов в растворе. Например, не только абсолютная величина, но и знак э. д. с. цепи, составленной из меди (положительного полюса) и цинка (отрицательного полюса), изменяется на обратный, если в системе (V. ) медный электрод погрузить вместо раствора сернокислой меди в раствор цианистой меди. Таким образом, напряжение и электродвижущая сила электрохимических систем существенно зависят от величины накладываемого или отбираемого тока, а также от состава и концентрации реагирующих на границе фаз электрод — электролит веп1,естБ. [c.145]

    По уменьшению эффективной работы пары неравномерной аэрации металлы располагаются в ряд цинк, хром, углеродистая сталь, серый чугун, кадмий, алюминий, медь, свинец, нержавеющая высокохромистая стапь, висмут, цирконий, тантал, титан. Из приведенного перечня следует, что весьма перспективный конструкционный материал для подземных сооружений - это титан, который, помимо высоких механических свойств, малой плотности, обладает также хорошими коррозионными характеристиками высокой общей коррозионной стойкостью и высокой устойчивостью к иону хлора, а также низкой чувствительностью к образованию пар дифференциальной аэрации. Из приведенных данных можно также сделать предположение о целесообразности применения циркония в качестве защитного покрытия на стальных изделиях в почвенных условиях. [c.48]

    Жало готового к работе паяльника должно быть равномерно залужено применяемым для пайки припоем ПОС-30 (ГОСТ 1499—70). Правильно подготовленный к работе паяльник имеет бестящее жало без черных участкон окислов. Паяльником набирается припой. Пайку бокового шва и донышка производят при вращении вокруг своей оси оправки с надетой согнутой заготовкой и вставленным донышком. Нельзя пользоваться во время пайки оправками, изготовленными из железа, меди и ее сплавов, так как в случае протекания оловянно-свинцового припоя на внутреннюю-поверхность спаиваемого цинкового стакана возможно прочное соединение материала оправки с цинковым электродом. На рис. 124 изображены места пайки швов цинковых стаканов. Швы после пайки должны быть герметичными. Герметичность всех корпусов проверяется работницей просмотром на свету. В местах пайки не должно быть наростов выступов припоя, а внутри цинкового стакана— крошки припоя. Внутренняя поверхность электрода должна быть блестящей без следов юкисления. Размеры спаянных цинковых электродов проверяются штангенциркулем или специально предназначенным шаблоном. [c.168]

    Азот, так же как углерод, водород и сера, может определяться, по данным Рейтсема и Оллфина (1961), путем комбинации аппаратуры для сжигания с хроматографической колонкой и катарометром. Применяемая авторами аппаратура состоит из следующих узлов, соединяемых последовательно дозатор — колонка I — трубка для сжигания — устройство для осушки — колонка II — детектор. Это аппаратурное устройство дает возможность быстрого (в процессе одного анализа) определения азота. Исследуемая проба может вводиться без предварительного взвешивания или непосредственно в трубку для сжигания (минуя колонку I), которая заполнена окисью меди, нанесенной на инертный материал, или в хроматографическую колонку. Дополнительное применение колонки I, включаемой между дозатором и трубкой для сжигания, дает возможность расширить область применения метода. При помощи этой колонки можно отделять присутствующие в смесях соединения азота от сопровождающих их веществ и затем исследовать содержание азота в них. Разделение продуктов сгорания производят на колонке II при помощи силикагеля. Чтобы упростить определение, возникающую при сгорании воду адсорбируют перед колонкой II в устройстве для осушки при помощи перхлората магния. Для количественной интер- [c.253]

    В обзорных работах [II рассмотрены общие вопросы по синтезу" нитрилов. Как классические реакции обмена алкилгалогенида с цианистым натрием, так и реакции обмена между арилгалогенидами и цианидом одновалентной меди были значительно усовершенствованы путем применения апротонных растворителей (разд. А.1). Эти методы, наряду с дегидратацией амидов (разд. В.1) и оксимов-(разд. В.4), до сих пор остаются наиболее общими и надежными, путями получения нитрилов. Относительно новым методом, особенно полезным для получения низкокипящих нитрилов (разд. В.5), является реакция обмена между нитрилом и карбоновой кислотой. Реакции присоединения, вероятно, следует прежде всего рассматривать как метод получения цианидных групп, связанных с третичным атомом углерода (разд. Г). Большая часть других методов не имеет такого общего характера. Однако они могут быть подходящими и даже незаменимыми при получении какого-либо конкретного нитрила из единственно доступного исходного соединения. Например, а гипотетическом случае, при необходимости получить адаман-тилцианид, имея в качестве исходного материала только адамантан, можно было бы провести галогенирование с последующим обменом с цианидом, либо прямое цианилирование нли карбоксилирование с последующим амидированием и дегидратацией (разд. В.1). [c.431]

    Установлено, что введение в латунь небольших количеств мыщьяка (примерно 0,001—0,06%) заметно снижает ее склонность к обесцинкованию [9]. Сложные по составу латуни, дополнительно легированные оловом или алюминием, также обладают повышенной коррозионной стойкостью. Основными из них являются оловянная латунь Л070—1 и алюминиевая латунь ЛА77—2. Благоприятное действие на латунь оказывает также олово (до 1%), которым часто легируют сплавы, содержащие 70% меди и 29% цинка. Этот сплав обладает высокой коррозионной стойкостью в минерализованных водах, однако он подвержен коррозии под напряжением и общей аммиачной коррозии. Коррозионная стойкость латуней возрастает также при присадке к ним алюминия (около 2%), сурьмы и фосфора (по 0,5%). Однако сплавы с этими добавками не нашли широкого применения. При выборе материала конденсаторных трубок в зависимости от степени минерализации охлаждающей воды следует руководствоваться данными табл. 4. [c.53]

    Это общее утверждение впрочем не означает, что сплавы со сте-хиометрической потерей материала от коррозии совершенно непригодны для изготовления заземлителей на станциях катодной защиты. Иногда в качестве материала для анодных заземлителей применяют даже железный лом кроме того, при электролитической обработке воды используют алюминиевые аноды (см. раздел 21.3). Цинковые сплавы находят применение как материал для анодов лри электролитическом травлении для удаления ржавчины, чтобы предотвратить образование гремучего хлорного газа на аноде. Для внутренней защиты резервуаров при очень низкой электропроводности содержащейся в них воды на магниевые протекторы иногда накладывают ток от внешнего источника с целью увеличить токоотдачу (в амперах) (см. раздел 21.1). По так называемому способу Кателько наряду с алюминиевыми анодами (протекторами) намеренно устанавливают медные, чтобы наряду с защитой от коррозии обеспечить также и предотвращение обрастания благодаря внедрению токсичных соединений меди в поверхностный слой. Впрочем, все такие области применения являются сугубо специальными. На практике число материалов, пригодных для изготовления анодных заземлителей, сравнительно ограничено. В основном могут применяться следующие материалы графит, магнетит, ферросилид с различными добавками, сплавы свинца с серебром, а также так называемые вентильные металлы с покрытиями из благородных металлов, например платины. Вентильными называют металлы с пассивными поверхностными слоями, не имеющими электронной проводимости и сохраняющими стойкость даже при очень положительных потенциалах, например титан, ниобий, тантал и вольфрам. [c.198]


Смотреть страницы где упоминается термин Медь как материал следов: [c.84]    [c.69]    [c.125]    [c.30]    [c.175]    [c.177]    [c.132]    [c.64]   
Применение поглощения и испускания рентгеновских лучей (1964) -- [ c.242 , c.244 ]




ПОИСК





Смотрите так же термины и статьи:

след

след н след



© 2025 chem21.info Реклама на сайте