Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ДЕГИДРОГЕНИЗАЦИЯ также

    Д е г и д р о генизация боковой цепи. Примером этой реакции может служить конверсия этилбензола, получаемого при алкилировании бензола этиленом, до стирола. Реакция протекает в интервале температур от 650 до 700° С или при более низких температурах, а случае применения соответствующих катализаторов. Так, Облад и др. [30] нашли, что в контакте с окисью хрома реакция проходит при 480° С. Во время мировой войны стирол, используемый для получения синтетического каучука, производился главным образом посредством процесса Доу [16] с использованием в качестве катализатора промотиро-ванной карбонатом калия и стабилизированной окисью меди, окиси железа, нанесенной на окись магния. Температура устанавливалась в интервале от 600 до 660° С. Для удаления отложившегося на катализаторе углерода использовался пар в количестве до 2,6 кг на килограмм этилбензола. Реакции дегидрогенизации также способствовало применение бензола в качестве разбавителя или низких давлений. Выходы продукта доходили до 35% за проход, а предельные выходы — порядка 90%. Время действия катализатора — год или больше. [c.107]


    Другие промоторы. Сами по себе окислы металлов также являются катализаторами. Окись хрома (одну или в смеси с глиноземом) применяют для дегидрогенизации. Этой же цели могут служить окись хрома с добавкой окиси церия, смесь окиси магния, окиси железа и окиси калия, окись молибдена (последняя является также катализатором гидроформинга). Соли металлов, в частности соли галогеноводородных кислот, были первыми синтетическими катализаторами в переработке нефти под действием хлористого алюминия проводились процессы крекинга галоидные соли алюминия служат катализаторами процессов полимеризации и изомеризации, а хлористый водород является их промотором. [c.23]

    На установках фирмы Филлипс петролеум каталитическую дегидрогенизацию бутана проводят в трубчатых реакторах с внешним обогревом дымовыми газами. Процесс также идет на хромоалюминиевом катализаторе с периодической его регенерацией воздухом. Общий выход бутилена достигает 80% в расчете на переработанный бутан. [c.69]

    В условиях термического крекинга выделение молекулярного водорода невелико. На свежем катализаторе реакции дегидрогенизации также не доминируют. В промышленных катализаторах с течением времени накапливаются примеси никеля, железа, ванадия. В этих условиях образование водорода значительно. Дегидрогенизация становится важной реакцией в том случае, когда насыщенное или частично насыщенное кольцо связано с ароматическим кольцом. [c.228]

    В результате некаталитического крекинга получаются большие выходы метана, этана и этилена и меньшие углеводородов Сд —С5, по сравнению с каталитическим процессом. Катализаторы ориентируют расщепление в середину молекулы. С другой стороны, сравнительно сильное образование водорода указывает, что реакции дегидрогенизации также ускоряются катализаторами. [c.25]

    Состав продуктов дегидрогенизации также зависит от природы сырья. В табл. 35 даны составы трех характерных бензинов до и после ароматизации. [c.138]

    Реакция превращения циклогексана в бензол (дегидрогенизация, пли дегидрирование) протекает при пропускании его над катализатором (платиновой чернью) при 300 °С. Предельные углеводороды реакцией дегидрогенизации также можно превращать в ароматические. Например  [c.308]

    Дегидрогенизация спирта обладает рядом преимуществ как способ перехода к альдегиду. В этом случае получается реакционный газ более простого состава и меньшее число побочных продуктов. Главный из них — этилацетат. Температура разложения спирта при дегидрогенизации также ниже, чем при окислении она лежит в пределах 275—325°. [c.156]


    Следует отметить, что работа была проведена в то время, когда спектроскопические методы анализа углеводородов еще не были доступны циклопарафиновые углеводороды характеризовались дегидрогенизацией в ароматические углеводороды (не охарактеризованы), которые затем окислялись в кислоты. Не было показано, была ли пропильная группа нормального или изостроения. Присутствие или отсутствие гем-диалкильных групп в циклогексановом кольце также не было установлено. [c.340]

    Ненасыщенные углеводороды склонны также к реакциям дальнейшей дегидрогенизации, но оин протекают в незначительном размере и большого влияния иа состав конечных продуктов не оказывают. Роль реакции изомеризации в общем процессе пиролиза также незначительна. [c.38]

    Из парафиновых углеводородов природных й попутных газов для алкилпрования обычно используют изобутан и изомеры пентана и октана. Нормальные парафиновые и нафтеновые углеводороды дают алкилаты, обладающие менее ценными свойствами. Из непредельных углеводородов чаще всего используют бутилены, пропилен, амилены, которые также могут быть получены из природных и попутных газов путем их пиролиза и дегидрогенизации. С точки зрения антидетонационных свойств наилучшие алкилаты получаются при алкилировании изобутана бутиле-нами. [c.132]

    Нафтеновые углеводороды, содержащиеся также в значительных количествах в нефти, могут быть извлечены из нее либо специальными методами и использованы в новых процессах производства некоторых искусственных волокон, либо превращены путем дегидрогенизации или деструктивной переработки в ароматические углеводороды. [c.14]

    С. Р. Сергиенко. Наибольший выход среди продуктов крекинга приходится на толуольную и этилбензольную фракции, значительно меньший — на пропилбензольную фракцию. Это показывает, что в основном идет отщепление нропильной и этиль-ной групп. Полиалкилбензолов, а также моноалкилбензолов с разветвленной цсп ью в условиях реакции не образовалось. Что касается н.-бутилциклогексана, то с ним были получены в тех же условиях весьма близкие результаты. Выход катализата составил около 70%, выход нафталина — 40%. Наряду с монеалкилбензолами, получаемыми из н.-бутилбензола, из бутилциклогексана был получен в результате дегидрогенизации также и н.-бутилбензол. Продуктов частичного дегидрирования в катализате найдено не было. [c.69]

    Н. Д. Зелинский и Б. А. Казанский [8] доказали применимость метода каталитической дегидрогенизации также к исследованию нефтяных фраадий с более высокой температурой кипения (170—200°). В частности, в бакинском бензине было доказано наличие декалина, превращающегося в условиях опытов в нафталин. [c.78]

    Ароматические углеводороды, образовавшиеся в результате дегидрогенизации гидроароматнческих углеводородов, удалялись от катализата также, как ароматические углеводороды бензина прямой гонки. [c.93]

    Ароматические углеводороды, образовавшиеся дегидрогенизацией гидроароматнческих углеводородов, удалялись также, как и ароматические углеводороды прямой гонки. [c.180]

    В таких соединениях шестичленное кольцо легко превращается и ароматическое ядро, даже когда одновременно происходит удаление метильной и карбонильной групп, а также водородных атомов. Обычно при каталитическом гидрировании циклогексенов и циклогексадиенов в качестве побочного продукта находят соответствующий ароматический углеводород, образовавшийся в результате дегидрогенизации или дис-аропорционирования над катализатором. [c.487]

    Возможна также дегидрогенизация боковой цепи с целью получения углеводорода типа стирола. Дегидрогенизация -цимола (легко доступного как побочного продукта сульфирования древесины канадской сосны или полученного из природных терпенов) в 4,а-диметилстирол проводилась при температуре от 482 до. 593 над катализатором окись хрома на окиси алюминия. При 50%-ном превращении за один проход были получены замещенные стиролов с выходом 80%. Выходы были нескслько повышены путем разбавления исходного сырья бензолом [19]. [c.488]

    С. Декарбонилирование. В некоторых случаях необходимо удаление ил промежуточного продукта и процессе ароматизации функциональной группы такой, как альдегидная (—СНО) или спиртовая (—СНаОН). Образование бензола при пропускании бензилового спирта над нагретым никелевым катализатором известно давно [27] изучалось также разложение неароматических спиртов [1] и альдегидов [32] в углеводороды путем отщепления водорода, либо окиси углерода, либо того и другого. Если разлагаемый промежуточный продукт является циклогексильным или циклогексенильным производным, как непредельный альдегид, полученный в реакции Ди-пьса-Лльдера, то декарбоксилирование сопровождается, по-видимому, дегидрогенизацией с образованием аромч-тического углеводорода в одну стадию. Сырой продукт может содержать некоторое количество побочных продуктов, включая циклоолефины, которые повышают содержание ароматического углеводорода при его рециркуляции над дегидрирующим катализатором. [c.489]

    В случае достаточно высокой температуры крекинга могут также иметь место вторичные реакции. Дегидрирующие катализаторы, в частности, платинированные или палладированные уголь или асбест, никель и хромовые катализаторы способствуют ароматизации нафтеновых колец. Если кольцо по величине недостаточно для образования ароматического кольца, тогда дегидрогенизация идет с большим трудом и обычно сопровон дается крекингом кольца. [c.111]


    Реакции дегидрогенизации можно подвергнуть не только цикло-гексан, но и циклогексея (продукт дегидратации циклогексанола), имеющий одну двойную связь, а также цикшгексадиен, имеющий две двойные связи. [c.38]

    Изучение изомеризации предельных угленодородов в течение болсс двух десятилетий все возрастающим числом исследователей дало много сведений, важных как для техники, так и для теории. Исследования в этом направлении стимулировались потребностью в изобутане — сырье для процессов алкилирования, а также желательностью иревращения содержащихся в бензине парафинов нормального строения в изомеры с разветвленными цепями, обладающие более высокими аитидетонацион-иыми свойствами. Практическое значение аналогичного процесса изомеризации алкилциклопентанов в циклогексан или его алкилзамещенные объясняется главным образом тем, что эти последние являются промежуточными соединениями при производстве соответствующих ароматических углеводородов посредством дегидрогенизации. Сам циклогексан также является сырьем для получения адипиновой кислоты для производства иейлопа. Помимо этой практической стороны дела, изучение подобных реакций может пролить свет на поведение углеводородов и помочь в разъяснении механизма каталитических реакций. [c.14]

    Г. П. Маслянским и М. В. Велтистовой [3] установлено, что в npii-сутствии соответствующего катализатора циклогексан может реагировать в двух направлениях. При пропускании паров циклогексана или смеси циклогексана с водородом над катализатором при температурах 450 — 550° С помимо реакции дегидрогенизации идет также и изомеризация циклогексана в метилциклонентап  [c.147]

    Серебрякова и А. В. Фрост [3] рассчитали равновесие реакции изомеризации бутана, воспользовавшись результатами своих экспериментальных измерений констант равновесия реакции изомеризации бутиленов, а также данными Фраи и Хеппке [19] по дегидрогенизации бутанов. Однако и эти расчеты окапались но более удовлетворительными, чем расчеты цитированных выше авторов. [c.300]

    В промышленности широко используется проведение реакций в струе газа, проходящего через реактор, который может быть или пустым, играя роль только области, где поддерживается постоянная температура, или заполненным слоем зер-неного катализатора. Примерами реакций, осуществляемых в потоке в промышленных масштабах, могут служить реакции термического и каталитического крекинга нефтепродуктов, каталитического алкилирования, иолимеризации, гидро- и дегидрогенизации углеводородов, дегидратации и дегидрогенизации спиртов, гидратации олефинов, галоидирования, нитроваиия охислами азота, синтеза аммиака, получения серной кислоты контактным способом, синтеза моторного топлива н т. п. Поэтому и лабораторные опыты по изучению кинетики многих в.ажных широко применяемых в промышленности реакций проводятся также в потоке. Вследствие того, что реакции этого типа проводятся обычно при постоянном давлении и сопровождаются в большинстве случаев изменением объема участвующих в реакции веществ, уравнения кинетики этих процессов должны отличаться от уравнений, выведенных выше для условия ПОСТОЯННОГО) объема. Кроме того, и сам метод расчета кон-стаит скоростей реакций, протекающих в потоке, должен отличаться от методов расчета констант скоростей реакций,осуществляемых при постоянном объеме, так как очень трудно определить время пребывания реагирующих веществ в зоне реакции (так называемое время контакта). [c.48]

    Мы) ограничимся здесь главным образом реакциями полимеризации углеводородов. Реакции дегидрогенизации и. диссоциации будут изложены отдельно в лавах посвященных термическим реакциям углеводородов в отсутствии и в присутствии катализаторов. Далее, весьма интересные явления изомеризации углеводородов не могут нами рассматриваться t особой главе за недостатком места, а также вви ду их меньшего значения с нрактичеокой точки зрения Мы( ограничимся тем, что укажем на перегруппировки, имеющие место при протекании различных реакций (перегруппировки полиметилено-вых колец, сопряженных двойных /связей и т. д.). [c.95]

    Весьма часто также предварительное о кисление, нредшествующее полимеризации, приводит, к частичной дегидрогенизации углеводородов, сообщая им непредельный характер, что благоприятствует про-це)сса.м полимеризации.  [c.98]

    Интересно отметить, что фенолы, правда, крайне незначительном количестве, выделены Тольцманом и Пилатом, а, также Стори и Сноу и из природной нефти. В отличие от каменного угля, здесь мы уже не можем считать источником образования фенолов высокомолекулярные кислородсодержащие соединения гуминового характера. Наиболее вероятным здесь является возникно Еение фенолов за счет непредельных циклических кетонов (см. вьнпе) или дегидрогенизации циклических алкоголей.  [c.262]

    Известно, что пр И реакциях термического разложения, кроме жидких углеводородов с низкими температурами кииения, образу-ютая также тяжелые углеводороды с конденсированными кольцами. Одновременное действие тем пературы и давления благоприятствует развитию побочных реакций конденсации, полимеризации и дегидрогенизации, которые утяжеляют, эти остатки. [c.354]

    В свою очередь, вновь образовавшиеся продукты также подвергаются тем же реакциям, дегидрогенизации и конденсаи ии . Продукты, таким образом получаемые под более или менее продолжительным действием температуры и давления, имеют строение, сходное с асфальтом. [c.358]

    Процесс Гудри пригоден также и для дегидрогенизации йен-танов с целью повышения октановых чисел фракции С5. Так же как и при дегидрогенизации бутанов, процесс проводится на неподвижном хромо-алюминиевом катализаторе. По сообщению фирмы опытные работы показали, что, используя этот процесс, из к-нентана, имеющего октановое число 63,5 (по исследовательскому методу без ТЭС), получается 94%-ный выход продукта с октановым числом 85. Дегидрогенизация изопентана дает продукт с октановым числом 99 при выходе его 97%. [c.69]

    Проводятся также работы и по каталитической дегидрогенизации иропана. Дегидрогенизация пропана может производиться на тех же катализаторах, что и дегидрогенизация бутана, с той разницей, что в нервом случае требуется несколько более высокая температура (выше 600°). Избирательноств катализаторов при переходе от бутана к более низкомолекулярному сырью несколько снижается, в связи с чем проводятся дальнейшие работы ио отысканию новых более эффективных катализаторов. [c.69]

    При взаимодействии этилена с бензолом образуется этилбензол, из которого путем дегидрогенизации в присутствии водяного пара получается стирол. Последний используется для производства термопластических материалов и синтетического каучука. В настоящее время большое внимание уделяется производству стирольио-бутадиеновых смол, т. е. полимеров, содержащих 70—90% стирола и 30—10% дивинила, применяемых для производства кожзаменителей. Из стирола изготовляют также стирольный поронласт — новый очень легкий и прочный материал, применяемый в строительстве как основа для изоляции и штукатурки. [c.76]

    Кроме того, В. С. Гутыря занимался изучением каталитической очистки жидкофазного пресс-дистиллята, гидратации олефинов, термической дегидрогенизации пропана и бутана, а также получением данных для проектирования пефтестабилизационных и газолиновых заводов, технико-экономического анализа перегонки мазутов, подготовки нефтей к переработке, переработки искусственных нефтяных газов бакинских заводов. Несмотря на большое разнообразие изучаемых вопросов в основе всех разработок В. С. Гутыри зало-/кеи единый принцип бережного отношения к нефти как бесценному народному достоянию, универсальному сырью, из которого мояшо получить множество полезных продуктов. [c.8]

    Наличие в составе алюмосиликатных катализаторов 3—5 % щелочноземельных металлов (Са, Mg), а также небольших количеств по-видимому, не влияет на каталитические свойства алюмосиликата. Триоксид лгелеза в совокупности с А1зОа и 310.2 может усиливать катализ реакций дегидрогенизации. Искусственное введение в состав алюмосиликатных катализаторов кислородных соединений бора, марганца, тория, циркония и т. д., рекомендуемое многими патентами, вероятно, связано с повышением термической устойчивости катализатора или с понижением его обуглероживаемости за счет каталитического торможения реакций глубокого распада углеводородов либо, наконец, со смягчением окислительных процессов на поверхности катализатора при его регенерации горячим воздухом. [c.58]

    Возмоя но также, что для термического риформинга, в процессе которого не достигается та ст<ч[( нь изомеризации олефинов, какая может иметь место в процессе пиролиза, оптимальным будет ре ким, обеспечивающий преобладание реакций термической дегидрогенизации и получение олефинов, способных в условиях алюАюскликатной каталитической очистки не только гидрироваться, но и изомирпЕюваться с образованием разветвленных и циклических молекул. [c.115]

    Гагы деструктивной гидрогенизации нефтяного сырья на TOSO объэмн. % состоят из водорода. Остальное составляют метановые углеводороды. Газы каталитической дегидрогенизации парафинов и олефинов, а также каталитической циклизации представляют собой водород с примесью метана, этана, этилена и неугле-водорс дных компонентов. Газы каталитической дегидрогенизации нафтенов состоят почти целиком из водорода. [c.16]

    В продуктах расщепления нормальных парафинов олефины отсутствуют. Отношение изопарафины и-парафины выше равновесного для изо-С К-С4 в 6 раз, для ызо-Сб "Сб в 3 раза. Отсутствуют углеводороды с четвертичным углеродным атомом. Непревращенное сырье не изомеризовано. Бутилбензол в основном деалкилируется с образованием бутанов и бензола, а также толуола и пропана. В тетралине происходит раскрытие кольца и дегидрогенизация с образованием значительного количества нафталина [c.308]


Смотреть страницы где упоминается термин ДЕГИДРОГЕНИЗАЦИЯ также: [c.449]    [c.490]    [c.327]    [c.263]    [c.283]    [c.356]    [c.282]    [c.414]    [c.107]    [c.107]    [c.30]   
Синтезы органических препаратов Сб.3 (1952) -- [ c.0 ]

Синтезы органических препаратов Сб.2 (1949) -- [ c.0 ]

Синтезы органических препаратов Справочник Сборник 2 (1949) -- [ c.0 ]

Синтезы органических препаратов Сборник 3 (1952) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Дегидрогенизация



© 2025 chem21.info Реклама на сайте