Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Процессы изомеризации

Рис. 46. Схема процесса изомеризации метилциклопентана в циклогексан методом Шелла. Рис. 46. <a href="/info/473398">Схема процесса изомеризации</a> метилциклопентана в <a href="/info/1042902">циклогексан методом</a> Шелла.

Рис. IV-33. Поточная схема процесса изомеризации Рис. IV-33. <a href="/info/95963">Поточная схема</a> процесса изомеризации
    Весьма перспективными в нефтепереработке являются процессы изомеризации легких парафиновых углеводородов нормального строения и ароматических углеводородов фракции Се. Изомеризация н-бутана в изобутан увеличивает ресурсы сырья процесса алкилирования изобутана олефинами, а изомеризация углеводородов Сз—Сб используется для получения высокооктановых компонентов бензинов АИ-93 и АИ-98. Сырьем для процесса изомеризации углеводородов С5—Се являются легкие бензиновые фракции н. к. —62 (пентановая фракция) или н. к. — 70 °С (пентан-гекса-новая фракция). В первом случае используется высокотемпературная изомеризация и во втором — низкотемпературная изомеризация. [c.242]

Таблица 2.3. Влияние способа фторирования окснда алюминия на активность катализатора и на унос фтора из катализатора в процессе изомеризации -пентана [19] Таблица 2.3. <a href="/info/472304">Влияние способа</a> фторирования окснда алюминия на <a href="/info/6066">активность катализатора</a> и на унос фтора из катализатора в процессе изомеризации -пентана [19]
    Новый этап начался в 1949 г., когда был разработан процесс каталитического риформинга с широким применением бифункциональных катализаторов. Это послужило толчком для разработки процессов изомеризации парафиновых углеводородов при давлении водорода в паровой фазе, температурах 350-500 °С на окисных, сульфидных катализаторах и металлах VIH группы, нанесенных на носители, обладающие кислотными свойствами — оксид алюминия, промотированный фтором, и алюмосиликаты [5—9]. [c.5]

    Равновесные концентрации при изомеризации бутанов, представляющей для нас особый интерес, можно найти для разных температур при помощи диаграммы, изображенной на рис. 95. В табл. 129 приведены количественные данные по равновесиям процессов изомеризации бутанов, пентанов и гексанов в жидкой фазе, осуществленных в США в промыщленном масштабе [11]. Цифры представляют объемные проценты того или иного изомера в жидкости. Из этих результатов вытекает следующее. [c.514]


    А. ИЗ НЕФТЯНЫХ ФРАКЦИЙ В процессе изомеризации метилциклопентана по способу фирмы Шелл применяется очень узкая фракция, выкипающая в пределах 66—85°, состав ее в % объемп. приведен ниже. [c.100]

    В зависимости от природы носителя и способа его приготовления различается механизм действия и активность катализатора в реакции изомеризации парафиновых углеводородов. Алюмоплатиновые катализаторы, промотированные фтором, позволяют осуществлять процесс при 360-420 °С и называются высокотемпературными металлцеолитные, на которых процесс идет при 260-400 °С, в зависимости от типа применяемого цеолита, называются среднетемпературными на алюмоплатиновых катализаторах, промотированных хлором, температура процесса изомеризации составляет 100-200 °С, такие катализаторы принято называть низкотемпературными. [c.43]

    V. ПРОВЕДЕНИЕ ПРОЦЕССА ИЗОМЕРИЗАЦИИ В ПРОМЫШЛЕННЫХ [c.522]

    Установлено, что уменьшению количественного содержания пятичленных нафтенов в бензиновых фракциях по горизонтам соответствует увеличение количественного содержания шестичленных нафтенов. Изучение поведения алкил-циклопентановых углеводородов в присутствии глины дает основание предположить, что в природе имеет место процесс изомеризации гомологов циклопентана в циклогексановые углеводороды. [c.145]

    Гексаны, по-видимому, несколько чувствительнее к побочным реакциям, чем пентаны. Так, например, при определенных условиях, когда для управления процессом изомеризации пентанов было достаточно добавки только циклических ингибиторов, для гексанов необходимо добавлять, кроме циклических веществ, еще и водород [21]. Циклические ингибиторы вполне эффективно действуют в отсутствии водорода в системе, в которой поддерживается низкое отношение катализатора к водороду, и в реактор непрерывно вводится свежий катализатор [38]. [c.31]

    При осуществлении процессов изомеризации пентан-гексановых фракций, выкипающих до 70 °С, в состав их помимо пентанов и гексанов входят высококипящие парафиновые углеводороды, нафтеновые и ароматические углеводороды (бензол, метилциклопентан, циклогексан, гептаны). [c.31]

    Поточная схема процессов изомеризации легких парафиновых и ароматических углеводородов показана на рис. 1У-33. Процесс изомеризации протекает в среде водорода и. включает стадию реакции и две стадии разделения продуктов реакции —в сепараторе и в ректификационных колоннах. Изомеризация легких парафиновых и ароматических углеводородов протекает при умеренно низких температурах, поэтому продукты реакции получаются в жидкой фазе. В сепараторе от жидких продуктов реакции отделяется циркулирующий водород, затем в ректификационных колоннах изомеризат разделяется на целевые компоненты. Непревращенное сырье рециркулирует в реактор. [c.243]

    Возможно также, что для решения одинаковых технологических задач будут применяться различные комбинации из связанных элементов процесса. В качестве примера рассмотрим процесс изомеризации нормального бутана. Ясное представление об одном из возможных осуществлений реакции на крупной промышленной установке дает схема, приведенная на рис. 13-22. [c.282]

    Для выяснения роли природных алюмосиликатов в процессе изомеризации ксилолов мы намерены продолжить исследования. [c.25]

    Наибольшее распространение в нефтепереработке получили низко- и высокотемпературные процессы изомеризации н-парафинов - - Сц на основе алюмоплатиновых катализаторов, промотирован — ны хлором и фтором. [c.199]

    Высокая эффективность процессов изомеризации заключается в том, что в качестве сырья используются низкооктановые компоненты нефти — фракции н.к.— 62 °С и рафинаты каталитического риформинга, содержащие в основном н —пентаны и н — г< ксаны. Это сырье а также фракции и С , получаемые с ГФУ) изомеризуется в среде водорода в присутствии бифункциональных к атализаторов. Высокие детонационная стойкость (см. табл. 10.2) и испаряемость продуктов изомеризации углеводородов и обус — ловливают их исключительную ценность в качестве низкокипящих в ысокооктановых компонентов неэтилированных автобензинов. [c.198]

    В перспективе процесс изомеризации может быть интенсифицирован применением низкотемпературных катализаторов, переводом ректификации на цеолитное или мембранное разделение. [c.202]

    В зависимости от применяемого катализатора режим процесса изомеризации может меняться в широких интервалах  [c.44]

    В настоящей монографии представлены исследования по изомеризации парафиновых углеводородов,выполненные во Всесоюзном научно-исследовательском институте нефтехимических процессов в 1960-1980 гг., а также обобщены литературные данные за эти годы. В этот период были разработаны и внедрены в промышленность Советского Союза и ряда стран СЭВ отечественные катализаторы и процессы изомеризации парафиновых углеводородов. [c.3]

    Процессы изомеризации парафиновых углеводородов занимают заметное место в нефтеперерабатывающей и нефте.химической промышленности и промышленности синтетического каучука. [c.3]

    Результаты опытов по влиянию парциального давления водорода на процесс изомеризации н-пентана при парциальных давлениях н-пентана 0,5 и 1,0 МПа и изменении парциального давления водорода от 1,5 до [c.21]


    Представлялось необходимым изучить влияние мольного соотношения водород н-пентан на глубину изомеризации. Была поставлена серия опытов при 380 °С, повышенном давлении и объемной скорости н-пентана 1,0ч мольное отношение водород н-пентан менялось в широких пределах - от 2,3 до 34. В качестве сырья использовались два образца н-пентана с примесью 12,4% (образец 1) и 0,77с (образец 2) изопентана. Результаты представлены на рис. 1.14. В опытах с образцом 1 увеличение мольного отношения водород н-пентан от 2,3 до 34 уменьшало глубину изомеризации с 37,0 до 15,6%. При работе с образцом 2 увеличение мольного отношения в пять раз (от 2,3 до 11,2) снижало глубину изомеризации в три раза (с 26,8 до 8,2%). Подобная зависимость объясняется тем, что с увеличением мольного отношения водород н-пентан понижается парциальное давление н-пентана и это влечет за собой уменьшение скорости изомеризации. Следовательно, целесообразно вести процесс изомеризации н-пентана при возможно более низком мольном отношении водород н-пентан, допустимом с точки зрения сохранения стабильности катализатора -низкая кратность циркуляции газа должна также способствовать [c.23]

    В процессе изомеризации на платиновых катализаторах эти углеводороды подвергаются превращениям в соответствии с условиями термодинамического равновесия для каждого углеводорода по нижеследующим [c.31]

    В реакции изомеризации парафиновых углеводородов наиболее медленной стадией является перегруппировка промежуточных соединений на кислотных центрах носителя, поэтому при синтезе катализатора необходимо придать носителю сильные кислотные свойства. Роль металла сводится к осуществлению первичного акта дегидрирования молекулы парафинового углеводорода с образованием олефина и протекания реакции гидрирования промежуточных соединений, что обеспечивает стабильность каталитической системы. Немаловажным моментом в синтезе катализатора изомеризации является подбор правильного соотношения между концентрацией металла и кислотностью носителя - это определяет не только активность, но и селективность его действия и стабильность в процессе изомеризации. [c.42]

    Приготовленные образцы катализаторов были испытаны в реакции изомеризации н-пентана и гидрирования бензола одновременно был определен унос фтора из катализатора в процессу изомеризации за счет гидролиза следами воды, содержащейся в сырье. Полученные результаты показали, что фтор при пропитке прокаленного оксида алюминия раствором НР удерживается весьма непрочно кроме того, такой способ не позволяет получить катализатор достаточно высокой активности. Высокоактивный катализатор получается при внесении фтора во влажный гидроксид алюминия и в. момент осаждения гидроксида алюминия (табл. 2.3). [c.47]

    Осернение может быть произведено разными способами [77а] обработкой влажных гранул катализатора сероводородом [а. с. 108257 (СССР) БИ, 1957, N 9] обработкой при повышенных температурах прокаленного катализатора сероводородом в смеси с водородом обработкой катализатора сырьем, содержащим серу, в процессе изомеризации или, наконец, введением сернистого соединения в носитель - оксид алюминия. [c.55]

    Важную роль в поддержании активности хлорированного катализатора играет хлороводород, который непрерывно добавляют в реакционную зону в виде хлорорганического соединения, разлагающегося в условиях процесса с образованием НС1. Этим компенсируются потери хлороводорода, постепенно удаляемого из катализатора в процессе изомеризации. [c.73]

    ОТЕЧЕСТВЕННЫХ КАТАЛИЗАТОРОВ В ПРОЦЕССАХ ИЗОМЕРИЗАЦИИ ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ [c.75]

    Ранние промышленные процессы изомеризации были предназначены для получения изобугана из н —бутана на хлористом алюминии при мягком температурном режиме (90— 120 °С). Изобу — тан далее алкилировали бутиленами и в результате получали изо — октан. [c.197]

    Себестоимость изомеризатов примерно в 3 раза ниже, чем ау1Килатов. Причем, процесс изомеризации имеет более обширную и надежную сырьевую базу, чем алкилирование. [c.202]

    На примере г<ис-1,4-диаминоциклогексана впервые продемонстрирована [54] конфигурационная изомеризация в ряду диаминов. Более подробно эти превращения исследованы в работе [55], где показано, что Ru/AlaOa проявляет высокую активность при взаимных переходах цис- и транс-изомеров 1,3- и 1,4-диаминоциклогексанов при 150—160 °С и давлении водорода 3,5 МПа. При этом в процессе изомеризации цис- и транс-диаминоциклогексанов образуются близкие к равновесным смеси, содержащие 70% транс-формы в случае 1,4-диам инов и 85% Ч с-формы при превращении 1,3-диаминоцикло-гексана. [c.81]

    Особый интерес представляет сравнение углеводородных составов исходного сырья, бензина термического риформинга и бензина платформинга , представленных на рис. 3. Как видно из графика, в исходном сырье с интервалом кипения 60—200° С нафтеновые углеводороды распределяются почти равномерно в области 20—100% смеси. Ароматические углеводороды распределяются также довольно равномерно в области 40—100%. Для бензина термического риформинга характерно образование олефинов и циклоолефинов. Вместе с этим происходит некоторая потеря нафтеновых и увеличение содержания ароматических углеводородов. В действительности, исходя из солава сырья, трудно допустить новообразование ароматических углеводородов. Увеличение концентрации последних в продукте объясняется разрушением неароматических компонентов. Концентрация парафиновых углеводородов в низкокипящих фракциях и ароматических в высококипящих фракциях обусловливается тем фактом, что в процессах изомеризации и гидрокрекинга парафиновых углеводородов средняя температура кипения их понижается, тогда, как в процессе пре- [c.182]

    Изучение изомеризации предельных угленодородов в течение болсс двух десятилетий все возрастающим числом исследователей дало много сведений, важных как для техники, так и для теории. Исследования в этом направлении стимулировались потребностью в изобутане — сырье для процессов алкилирования, а также желательностью иревращения содержащихся в бензине парафинов нормального строения в изомеры с разветвленными цепями, обладающие более высокими аитидетонацион-иыми свойствами. Практическое значение аналогичного процесса изомеризации алкилциклопентанов в циклогексан или его алкилзамещенные объясняется главным образом тем, что эти последние являются промежуточными соединениями при производстве соответствующих ароматических углеводородов посредством дегидрогенизации. Сам циклогексан также является сырьем для получения адипиновой кислоты для производства иейлопа. Помимо этой практической стороны дела, изучение подобных реакций может пролить свет на поведение углеводородов и помочь в разъяснении механизма каталитических реакций. [c.14]

    Такого же рода процессы изомеризации наблюдаются и в условиях каталитического крекинга. Интересная серия опытов проведена по изучению разложения олефинов (производных лпрт-алкилов), сопровождаемого изомеризацией [52]. Так, нанример, нри перегонке асимметричного ди-торет-бутилэтилена со следами бромнафталинсульфоновой кислоты идет расщепление молекулы с образованием изобутилена и гексенов, состоящих главным образом ив тетраметилэтилена. Эта реакция была объяснена на основании теории Уитмора об образовании иона карбония при реакциях изомеризации, катализируемых кислотами  [c.107]

    В настоящее время процессы изомеризации пентанов и гексанов получили особенное значение в связи с общемировой тенденцией отказа от применения тетраэтилсвинца при приготовлении автомобильных бензинов Изомеризацией н-бутана получают изобутан, применяемый в процессе алкилирования. Необходимость в изобутане возрастает в связи с применением зысокоакгивных цеолитсодержащих катализаторов в процессе каталитического крекинга и соответственным уменьшение.м количества получаемого изобутилена в комбинированных схемах получения алки-латов, изопрена и метил-грет-бутилового эфира процесс изомеризации н-бутана используется в качестве головного, с последующим дегидрированием изобутака в изобутилен. Селективное вовлечение во вторичные процессы изобутилена исключает дорогостоящую и энергоемкую стадию ректификации., [c.3]

    Процессы изомеризации парафиновых углеводородов можно разделить в зависимости от используемых катализаторов осуществляемые на хлориде алюминия, на алюмоплатиновых катализаторах, промотиро-ванных фтором и хлором, на металлцеолитсодержаших катализаторах, на фторидах металлов V и VI групп периодической системы. [c.3]

    Изомеризация при низких температурах имеет большие преимущества с точки зрения термодинамического равновесия, которое в этом случае более благоприятно для образования изопарафинов, в том числе вы-сокоразветвленных изомеров, обладающих высокими антидетонацион-ными характеристиками. Во всех процессах глубина превращения парафиновых углеводородов лимитируется равновесием, однако разделение, возврат непревращенной части исходного сырья и высокая селективность процесса изомеризации позволяет получить глубину превращения исходного углеводорода, близкую к 100%. В зависимости от количества рецикла изменяются показатели и технико-экономическая характеристика процесса увеличение рецикла приводит к удорожанию процесса, обеспечивая при этом более высокие октановые числа изомеризата. С этой точки зрения наиболее эффективными являются процессы изомеризации, осуществляемые при низкой температуре, обеспечивающей максимальную глубину превращения за проход . [c.4]

    Изомеризация парафиновых углеводородов на хлориде алюминия освещена в работах [1—4]. 1 Хлорид алюминия, обеспечивая термодинамически благоприятные условия протекания реакции, позволяет осуществлять ее при 50—150 °С. Эта температура способствует образованию продуктов, обогащенных разветвленными изомерами. Однако наряду с бесспорными достоинствами зтот катализатор обладал рядом отрицательных особенностей, усложняющих технологию процесса и зксплуатацию промышленных установок. Тем не менее во время второй мировой войны в связи с потребностью в алкилате для приготовления высокооктанового авиационного бензина процессы изомеризации на хлориде алюминия получили развитие, в основном для изомеризации н-бутана в изобутан. Первая промышленная установка была введена фирмой Shell в 1941 г. К концу второй мировой войны в США были разработаны пять процессов изомеризации, которые отличались либо методом введения хлорида алюминия в зону реакции, либо носителем для катализатора, либо его физическим состоянием. [c.5]

    Жидкофазный процесс фирмы Shell использовался в промышленности до недавнего времени. В этом процессе изомеризация н-бутана осуществляется на хлориде алюминия, растворенном в хлориде сурьмы. Температура процесса 65-100 °С, давление 2 МПа. 1 [c.5]

    Из разработанных процессов промышленное внедрение получили процессы изомеризации -бутана и пентан-гексановой фракции (бута-мер и пенекс) фирмы UOP в США и процесс высокотемпературной изомеризации н-пентана и пентан-гексановой фракции, разработанный во ВНИИнефтехиме. [c.6]

    Сырьем для процессов изомеризации парафиновых углеводородов служат индивидуальные парафиновь е углеводороды или узкие фракции, обогащенные этими углеводородами. [c.6]

    В промышленных процессах изомеризации -н-пентана и н-гексана на катализаторах Р1 - А12О3 - Р, Р1 - А12О3 - С1, Р1 - НМ - А12О3 найден баланс между реакциями изомеризации, гидрокрекинга и диспропорционирования, который позволяет осуществить процесс с высокой селективностью в случае изомеризации гептанов не достигнуто удовлетворительных результатов. [c.31]

    Приведенные здесь данные имеют большое практическое значение. При выборе состава сырья, оценке результатов и показателей изомеризации парафиновых углеводородов в различных процессах необходимо учитывать углеводородный состав сырья, в особенности содержание пентанов и нафтенов увеличение содержания пентанов всегда приводит к более благоприятному протеканию процесса изомеризации, в частности к более высокому октановому числу получаемого изомеризага. [c.34]


Смотреть страницы где упоминается термин Процессы изомеризации: [c.622]    [c.199]    [c.225]    [c.4]    [c.6]    [c.12]    [c.55]   
Смотреть главы в:

Каталитические превращения углеводородов -> Процессы изомеризации

Производство ароматических углеводородов из нефтяного сырья -> Процессы изомеризации

Технология натуральных эфирных масел и синтетических душистых веществ -> Процессы изомеризации

Новый справочник химика и технолога Сырьё и продукты -> Процессы изомеризации

Нефть и нефтепродукты -> Процессы изомеризации

Каталитические превращения углеводородов -> Процессы изомеризации

Введение в термографию Издание 2 -> Процессы изомеризации


Технология натуральных эфирных масел и синтетических душистых веществ (1984) -- [ c.256 ]




ПОИСК







© 2025 chem21.info Реклама на сайте