Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растекание жидкости

    Предотвращение распространения пожара должно обеспечиваться устройством противопожарных преград (стен, зон, поясов, защитных полос, занавесов и т. п.) установлением предельно допустимых площадей противопожарных отсеков и секций, устройством аварийного отключения и переключения аппаратов и коммуникаций, применением огнепреграждающих устройств (огнепреградителей, затворов, клапанов, заслонок и т. п.), разрывных предохранительных мембран на аппаратуре и коммуникациях, а также средств, исключающих или ограничивающих розлив и растекание жидкости при пожаре. [c.18]


    Размеры пожара зависят от площади зеркала разлившейся горючей жидкости. Поэтому надо иметь данные о зависимости площади зеркала разлившейся в результате аварии жидкости от условий истечения. Растекание жидкости зависит от таких факторов, как расход, продолжительность истечения, вязкость и т. п. Радиус растекания горючих жидкостей на горизонтальных поверхностях выражается произведением степенных функций критерия Галилея и критерия гомохронности  [c.14]

    Явление смачивания, приводящее к формированию краевого угла между жидкостью и твердой подложкой, лежит в основе механизмов, определяющих равновесие и кинетику влаги в пористых телах. Величина равновесного краевого угла 0о определяется полем поверхностных сил и энергией взаимодействия жидкости с твердой подложкой. Слабое взаимодействие ведет к несмачиванию, сильное —приводит к растеканию жидкости по поверхности, ее полному смачиванию. [c.210]

    Границами взрывоопасного участка следует считать внешние границы тех конструкций, которые обеспечивают выполнение требований п. 2.14 СНиП П-М.2-72. При наличии бортиков (поддонов), ограничивающих площадь растекания жидкостей при аварийном розливе, следует считать границей взрывоопасного участка внешние границы данных бортиков (поддонов). [c.363]

    При нулевом краевом угле жидкость будет смачивать твердую поверхность, а при угле, превышающем 90°, она стремится уйти с поверхности или собраться в более или менее сферическую каплю. Такую поверхность называют гидрофобной, если речь идет о контакте поверхности с водой. Чтобы улучшить растекание жидкости, необходимо уменьшить ее поверхностное натяжение, что проще всего достигается введением в жидкую фазу поверхностно-активных веществ (ПАВ), которые легко адсорбируются на поверхности раздела жидкость — твердое тело и жидкость — воздух. По-видимому, именно присутствие естественных ПАВ в топливах и масляных дистиллятах обеспечивает хорошую смачиваемость ими металлических деталей двигателей и механизмов. Особенно хорошо смачивают металл смазочные масла, содержащие полярные функциональные присадки. [c.191]

    Где — удельная геометрическая поверхность насадки а — поверхностное натяжение жидкости — критическое поверхностное натяжение для насадочного материала, т. е. максимальное поверхностное натяжение, допускающее растекание жидкости по поверхности насадки (для воды и керамических насадок отношение к а составляет 0,85). [c.212]

    Уменьшение свободной энергии —AG системы в результате растекания жидкости по поверхности твердого тела определяется соотношением  [c.331]


    Для кривых растекания жидкости по этим кольцам (см. рис. 14 и 15) характерно следующее  [c.49]

    Двухчленная структура формул (39)—(43) позволяет определять раздельно число точек основной сетки и на периферии орошаемой поверхности, что представляет известные удобства при проектировании например, когда при установке распределительных плит и других орошающих устройств нужно избежать усиленного орошения стен колонны (за счет растекания жидкости ниже плоскости торца насадки) или, наоборот, когда необходимо реализовать усиленное орошение пристенной зоны или ее отдельных участков (например, под штуцером вывода газа из колонны). [c.60]

    РАСТЕКАНИЕ ЖИДКОСТИ В ВЕРХНИХ СЛОЯХ НАСАДКИ [c.70]

    Приведите все возможные причины самопроизвольного растекания жидкостей по поверхности тел. В чем причины различного поведения жидкостей  [c.55]

    Допустим, что скорость одной из двух струек перед решеткой равна нулю — случай полной неравномерности, имеющей место при набегании на решетку узкой струи (рис. 3.4). Все описанное справедливо и для этого случая вследствие торможения при набегании на решетку узкая струя будет растекаться по ней в поперечном направлении растекание будет продолжаться н после протекания жидкости через отверстия плоской решетки в виде отдельных струек. Однако по мере увеличения коэффициента сопротивления решетки поперечное (радиальное) растекание струек будет непрерывно расти, а следовательно, будет возрастать до бесконечности и степень растекания жидкости (расширения потока) за решеткой, так что скорость потока будет стремиться к нулю. При этом степень растекания [c.80]

    Если устранить радиальное растекание жидкости за плоской решеткой, то такую решетку можно сделать достаточно эффективным распределительным устройством и при больших значениях Сг- Так как причиной радиального растекания жидкости является радиальное направление струек, вытекающих из отверстий тонкостенной решетки, очевидно, для устра- [c.82]

    До сих пор рассматривалось растекание жидкости с малой регулярной и с полной неравномерностями потока. При большой регулярной неравномерности нет резкой границы между трубками тока с различными скоростями и нет узкой одиночной струи (рис. 3.9, а), поэтому растекание жидкости по решетке имеет промежуточный характер. Выравнивание потока за решеткой будет, очевидно, достигаться при критическом коэффициенте сопротивления р = Сопт. имеющем большее значение, чем при малой регулярной неравномерности, но меньшее, чем при полной неравномерности. При коэффициенте сопротивления решетки Ср > Скр профиль скорости на конечном расстоянии будет перевернутым (рис. 3.9, в), и максимальная скорость за решеткой окажется в той части сечения, в которой перед решеткой она была минимальной (рис. 3.9, б), и наоборот. [c.87]

    Для определения толщин слоев о, 1, 2 воспользуемся условиями постоянства расходов твердого и жидкого компонентов J и /2. Чтобы получить третье уравнение, рассмотрим механизм изменения толщины Зд. Она изменяется за счет коллективного осаждения твердых частиц, лежащих на границе раздела жидкость—твердое со скоростью коллективного осаждения гу и за счет растекания жидкости по поверхности ротора со скоростью Уог ( о)-Итак, для определения величин 01 81, 2 имеем три уравнения [c.193]

    Полнота контакта фаз зависит от нагрузки сечения катализатора по жидкой фазе. Растекание жидкости в слое катализатора зависит от многих факторов, но определяюш,им является поверхностное натяжение. В свою очередь, установившаяся плотность орошения является оптимальной величиной, при которой все частицы катализатора одинаково смачиваются жидкой фазой. При этом в промышленном реакторе практически отсутствует разница температур в поперечном сечении слоя. [c.149]

    Чтобы предотвратить растекание жидкости к стенкам колонны, насадку загружают в колонну отдельными слоями высотой от 1,5 до 3 м. Между слоями насадки устанавливают распределители различных конструкций (рис. Х1У-20). [c.281]

    Цифра 2, введенная в знаменатель формулы (6-88), учитывает растекание жидкости в обе стороны. [c.170]

    Чтобы предотвратить растекание жидкости к стенкам, иногда насадку засыпают не сплошь на всю высоту, а в виде отдельных слоев, как показано на рис. 17-6. Высота отдельных слоев 1,5— 3 м. Для перераспределения жидкости и отвода ее от стенок под каждым слоем насадки, кроме нижнего, устанавливают направляющий конус 4. [c.598]

    Как показывает опыт, степень растекания жидкости по насадке зависит от длины Н пути жидкости в насадке, диаметра О колонны и диаметра ё. насадочных тел. Степень растекания жидко-104 [c.104]

    Каскадообразным расположением достигается периодическое нарушение ламинарного течения жидкости. Растеканием жидкости от середины нагревательного элемента к периметру увеличивается поверхность, занимаемая пленкой, благодаря чему толщина пленки уменьшается. Каскадообразное решение со сводообразными поверхностями препятствует стабилизации ламинарного течения, что оказывает благоприятное воздействие на величину коэффициента теплоотдачи. [c.234]


    Расчет по формуле (4.150) не учитывает эффекта переноса вещества в результате конвекции при растекании жидкости в капле за время ее образования. Попытка учета такого эффекта в радиальном направлении впервые бьта осуществлена в работе Ильковича [329]. Согласно расчетам Ильковича, локальный поток вещества на каплю определяется выражением ,,  [c.212]

    Выбор числа точек орошения и расхода жидкости в каждой точке орошения имеет большое значение для обеспечег ия эффективной работы колонггы. Для эффективной работы всей насадки и предотвращения прорывов газа через слабоорошаемые и несмачиваемые участки число точек орошения, сетка их расположения, а также расход жидкости в каждой точке должны выбираться так, чтобы при растекании жидкости внутри верхних слоев колец достигалась как полная смоченность некоторого поперечного сечения, параллельного торцу насадки, так и достаточно интенсивное орошение всего [c.44]

    Насадка Стедмана [58], выполненная в виде конусов из металлической сетки (рис. 276а), обладает высокой эффективностью, малой удерживающей способностью по жидкости и значительной пропускной способностью. Однако при сборке такой насадки трудно обеспечить правильное размещение конусов, чтобы избежать растекания жидкости к стенкам колонны. Отверстия для прохода пара А в смежных конусах смещены относительно друг друга. Эту насадку можно использовать в колонне, выполненной только из калиброванной трубы. [c.356]

    Как видно из этих данных, при одном и том же числе точек орошения п коэффициент эффективности пспользо-Biiiu-in насадки у возрастает с увеличением размера упорядоченных колец н колец навалом. Это согласуется с данными по увеличен1юй распределительной способности крупных колец (см. стр. 46 и рнс. 14, а н 15). При слое колец навалом (высотой до 1,5 м) требуемые значения Y достигаются и при уменьшенном количестве точек подачи орошения, что также согласуется с результатами опытов по растеканию жидкости на неупорядоченных кольцах. [c.51]

    Для сопоставления данных по растеканию жидкости на кольцевой насадке (см. рис. 15) с данными по массо-передаче на системе аммиак—вода изучено [21] влияние разных слоев подсыпки колец навалом на величину объемного коэффиииента абсорбции Кг всей иасадки опытной колонны диаметром 500 мм. С одноточечным и трехточечным оросителями, работавшими как при подаче нераздробленной струи, так и при ее разбрызги-пании о кольца, были испытаны следующие неупорядоченные слои  [c.67]

    Вопреки распространенному представлению о боль-Н1е 1 распределительной способности и эффективности слоя мелких колец Рашига (25x25 мм), из опытных данных следует, что эти кольца уступают по эффективности применения более крупным кольцам Рашига (50X50 и 80x80 мм) как при точечной подаче жидкости, так н при ее разбрызгивании. Слой колец Паля (см. рис. 2,6), растекание жидкости по которым затруднено [c.67]

    Рис, 22. Схема установки для опытов по растеканию жидкости в слое колец (а) и сотовый сбориик, охватываюилий жидкостной [c.71]

    Опыты показали также, что изменение высоты слоя от 600 до 900 мм незначительно влияет на увеличение площади орошаемой зоны, а регулярно уложенным кольцам комбинироваппого слоя свойственна некоторая распределительная способность (не приводящая, однако, к заметному увеличению площади смачиваемых зон вследствие ограниченного растекания жидкости по ним). [c.73]

    При растекании потока перед решеткой линии тока искривляются. Если в качестне распределительного устройства взята плоская (тонкостенная) решетка, у которой в отличие, например, от трубчатой решетки проходные отверстия не имеют направляюш,их стенок (поверхностей), то возникаюш,ее поперечное (радиальное) направление линий тока, т. е. скос потока, неизбежно сохранится и после протекания жидкости через отверстия. Это вызовет дальнейшее растекание, т. е. расширение струйки 1 и падение ее скорости за счет сужения струйки 2 и повышения ее скорости. Чем больше коэффициент сопротивления решетки, тем резче искривление линий тока при растекании жидкости по ее фронту, а следовательно, за решеткой значительнее расширение сечения и соответственно уменьшение скорости струйки 1 за счет струйки 2. Вследствие этого после определенного (критического или оптимального) значения коэффициента сопротивления Сопт плоской решетки, при котором поток за ней полностью-выравнивается, т. е. скорости в обеих струйках становятся одинаковыми, дальнейшее увеличение приводит к тому, что за решеткой скорость струйки 2 возрастает даже по сравнению со скоростью струйки /, возникает новая деформация поля скоростей в виде обращенной илн перевернутой неравномерности (рис. 3.3). [c.80]

    Таким обра. юм, степень растекания жидкости в сечениях на конечном расстоянии за плоской решеткой всегда значительнее, чем по ее фронту. Если при критическом значении коэффициента сопротивления решетки за ней достигается равномерное распределение скоростей, то на самой решетке поток остается еще неравномерным. [c.80]

    По экспериментальным данным Мерча [ 1851 при постоянных разме-. рах насадочных тел ВЭТС возрастает с увеличением диаметра колонны. Однако для насадок из проволочной сетки влияние диаметра колонны (по данным Стедмана и Мак-Магона) не так ощутимо, как, например, для насадки из колец Рашига или из седел. На основе систематических исследований пристеночного эффекта (растекание жидкости к стенкам колонны), проведенных Муллином [186], пришли к выводу, что наибольшая эффективность колонны достигается при соотношении диаметр колонны/-диаметр насадочного тела = 10—12. Если это соотношение не [c.137]

    Чтобы предотвратить растекание жидкости к стенкам (см. разд. 4.2), необходимо неоднократно собирать флегму по высоте колонны и снова распределять ее, возвращая к центральной части колонны. Гроссе-Ётрингхауз [32] пытался достичь этого, используя колонну, в корпусе которой были кольцевые вмятины глубиной 2 мм на расстоянии 30 мм друг от друга по высоте колонны (рис. 260). С этой же целью колонну можно разделить на отдельные участки и перераспределять флегму в конце каждого участка (см. разд. 4.10.2), а также использовать специальные вставки из металлической сетки с коническими углублениями. Их преимущество состоит в том, что они практически не имеют мертвых объемов [33]. [c.344]

    При использовании полиэтиленовых насадок в ректификационных колоннах из стекла или металла возникает опасность значительного растекания жидкости к стенкам колонны. Это растекание обусловлено разностью в силах адгезии, действующих в системах жидкость—стенки колонны и жидкость—элементы насадки (см. разд. 4.2). Согласно работе Штюрмана [141 ] растекание к стенкам можно уменьшить используя колонны с волнистыми стенками. Автором [137] показано, что путем специальной обработки внутренних стенок колонны можно также получить удовлетворительное распределение жидкости по насадкам, выполненным из пластмасс. Растекание жидкости к стенкам удается значительно уменьшить и с помощью покрытия внутренних стенок колонны полиэтиленовой или тефлоновой фольгой. [c.416]

    Поведение разлития после утечки будет зависеть от рельефа местности. Вообще говоря, сдерживать растекание жидкости должно обвалование, но иногда оно бывает плохо сконструировано. Если обьем обвгшования равен обьему жидкости, содержащейся в резервуаре, необходимо учитывать динамику растекающейся жидкости, так как при образовании волн, что вполне возможно, жидкость может выплеснуться через стенку обвалования. Предусмотренные внутренние выступы помогают избежать подобных случаев (ср. с сооружениями стенок набережной). Кроме того, если место утечки расположено достаточно высоко в резервуаре, образующаяся струя жидкости может достигать поверхности земли за стенкой обвалования. Другая проблема заключается в необходимости устранения из обвалования дождевой воды. [c.83]

    Пропитывающие средства должны обладать возможно низким поверхностным натяжением, поскольку косинус краевого угла смачивания и растекания жидкости на поверхности твердого тела при этом больше, а также повышенной коксуемостью, которая обеспечивается групповыми компонентами пеков, имеюн1нми высокие значения а. Поэтому необходимо иметь пеки, обладающие высокой коксуемостью прп сохранении положительного угла смачивания, что достигается подбором определенного соотношения объемов дисперсной фазы (асфальтены и карбены) и дисперсионной среды (масла) 1 д,ф/Уд,с и их составов. [c.70]


Смотреть страницы где упоминается термин Растекание жидкости: [c.364]    [c.365]    [c.46]    [c.47]    [c.47]    [c.48]    [c.52]    [c.74]    [c.263]    [c.276]    [c.14]    [c.14]    [c.163]   
Адгезия жидкости и смачивания (1974) -- [ c.129 , c.143 ]

Противопожарная защита открытых технологических установок Издание 2 (1986) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Растекание

Растекание жидкости по жидкости

Растекание растекания



© 2025 chem21.info Реклама на сайте