Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхностное натяжение критическое

    Методы определения ККМ основаны на резком изменении физико-химических свойств растворов ПАВ (например, поверхностного натяжения а, мутности т, эквивалентной электропроводности У., осмотического давления л, показателя преломления п). На кривой зависимости свойство — состав в области ККМ обычно появляется излом (рис. VI. 6). Одна из ветвей кривых (при более низких концентрациях) на рис. VI. 6 описывает свойства системы в молекулярном состоянии, а другая — в коллоидном. Абсциссу точки излома условно считают соответствующей переходу молекул в мицеллы, т. е. критической концентрацией мицеллообразования. Очевидно, что при ККМ существует весьма незначительное число мицелл. Ниже приводится краткое описание некоторых методов определения ККМ. [c.302]


    Рассчитайте энергию Гиббса образования зародыша критического размера в пересыш,енном растворе кремниевой кислоты, полученной из водного раствора силиката натрия с помощью ионного обмена. Поверхностное натяжение на границе кремнезема с водой примите равным 45 мДж/м . Коэффициент пересыщения раствора равен 3. Плогность частиц 1,8 г/см . [c.182]

    Изменение поверхностного натяжения с температурой может быть вычислено по следующему эмпирическому уравнению, дающему хорошее согласие с опытом при температуре, далекой от критической [11 ]  [c.136]

    Аддитивными методами можно рассчитывать как термодинамические величины (например, критические постоянные, мольную теплоемкость, энтальпию, энтропию, свободную энергию образования Гиббса, теплоту испарения, поверхностное натяжение, мольный объем, плотность и т. д.), так и молекулярные коэффициенты (коэффициенты вязкости, теплопроводности, диффузии). [c.84]

    Эти данные свидетельствуют об увеличении поверхностного натяжения с ростом молекулярного веса, что было отмечено очень давно [129]. С увеличением температуры поверхностное натяжение уменьшается и становится равным нулю при критической температуре [130]. Неуглеводородные материалы, растворенные в нефти, уменьшают поверхностное натяжение. Особенно активно действуют в этом смысле полярные соединения, а также мыла и жирные кислоты. Эффект в значительной мере зависит от концентрацпи поверхностно активного вещества вплоть до критического значения, выше которого дальнейшие повышения концентрации вызывают лишь небольшое изменение поверхностного натяжения. Критическая концентрация соответствует тому значению, которое требуется для образования мономолекулярного слоя на поверхности. Поверхностное натяжение лежит в основе ряда сложных явлений, наблюдаемых у эмульсий и пленок. [c.183]

    При определенной концентрации эмульгатора, соответствующей достижению плотной упаковки молекул ПАВ в адсорбционном слое и минимальному поверхностному натяжению на границе раздела фаз, в объеме начинается и заканчивается формирование мицелл, представляющих собой частицы коллоидной (мицелляр-ной) фазы [21, 22]. Такая концентрация называется критической концентрацией мицеллообразования (ККМ). [c.144]

    Как известно, у жидких веществ существует критическое давление и критическая температура, превышение которых приводит к исчезновению поверхностного натяжения. Критическое давление органических взрывчатых веществ составляет Ркр = 0— 50 кг/см . Что касается критической температуры, то она не определялась. Если воспользоваться эмпирическими выражениями [182, 183] для несильно ассоциированных жидкостей, (что, безусловно, нельзя считать обоснованным приемом), то получается величина порядка 250—350° С. Рассматривая горение жидких ВВ при давлениях выше критического и анализируя формулу Ландау, Андреев приходит к выводу [38], что устойчивое горение этих веществ при р 50 атм невозможно. Если ограничиваться рамками теории Ландау, то единственным фактором, стабилизирующим коротковолновые возмущения, является поверхностное натяжение, а потому при 0 —> О они начинают расти. Правда, можно учесть толщину Zp зоны реакции (в теории Ландау она равна нулю), и принять, что возмущения, размер которых меньше Zp, не влияют на горение. Выпишем выражение для размера возмущений как g — /ак , а р — Xj/uj. Используя формулу Ландау и табл. 20, получаем, что для выполнения требования критическая скорость горения при а О должна быть равна [c.206]


    В интервале температур, достаточно удаленном от критической точки, изменение поверхностного натяжения с температурой можно принять линейным и пользоваться следующей формулой  [c.44]

    Следует отметить, что поверхностное натяжение, критическая концентрация мицеллообразования, гидрофильно-липофильный баланс и другие физико-химические константы ПАВ и ТВВ, по-видимому, мало влияют на фрикционные свойства обработанных ими волокон и нитей. Это объясняется тем, что основная масса этих веществ непосредственно не сорбируется поверхностью волокон. [c.50]

    Определенное значение имеют также поверхностное натяжение, теплоемкость, критические температура и давление и другие показатели растворителей. [c.212]

    Поверхностным натяжением называется сила, под действием которой свободная поверхность стремится уменьшиться. Эта сила действует в направлении касательной к поверхности. Поверхностное натяжение уменьшается с повышением температуры, а при критической температуре оно равно нулю. В качестве единицы поверхностного натяжения принимается сила, которая приходится на единицу длины поверхности. [c.105]

    Из других работ Менделеева в областях, относящихся к физической химии, следует назвать его работы по упругости газов, введению универсальной газовой постоянной в уравнение состояния идеального газа, изучению термического расширения жидкостей и их поверхностного натяжения при различных температурах. В частности, последние работы привели к установлению Менделеевым существования температуры абсолютного кипения жидкостей (критической температуры). [c.17]

    Д. И. Менделеев установил, что зависимость поверхностного натяжения от температуры линейная. Поверхностное натяжение уменьшается с ростом температуры и становится равным нулю ири критической температуре. [c.100]

    Где — удельная геометрическая поверхность насадки а — поверхностное натяжение жидкости — критическое поверхностное натяжение для насадочного материала, т. е. максимальное поверхностное натяжение, допускающее растекание жидкости по поверхности насадки (для воды и керамических насадок отношение к а составляет 0,85). [c.212]

    Влияние физических свойств на размер пузыря. Самой критической стадией в росте пузыря является стадия, изображенная на рис. 5.6, б, когда радиус свободной поверхности наименьший, а давленпе внутри пузыря наибольшее. Математически это можно показать с помощью соотношения между поверхностным натяжением жидкости, радиусом пузыря и разностью давлений внутри пузыря и в окружающей жидкости. Принимая поверхность пузыря за сферическую оболочку, испытывающую действие растягивающих сил, можно записать [c.92]

    Последовательность выполнения работы. 1. Залить в сосуд / (см. рис. 53) стандартную жидкость и измерить ее поверхностное натяжение, как это было описано в работе 1 при всех указанных преподавателем температурах. Температуру установить по термометру 8 (см. рис. 53). Эта температура может на несколько градусов отличаться от той, которая задана преподавателем. 2. По окончании измерений показаний тягомера при всех температурах для стандартной жидкости пипеткой извлечь стандартную жидкость из сосуда /, высушить его и залить исследуемую жидкость. При замене жидкости в сосуде / через ультратермостат пустить холодную воду с тем, чтобы температура ультратермостата снизилась до начальной. 3. Измерить разрежение по тягомеру для исследуемой жидкости при всех заданных температурах. 4. Построить график зависимости поверхностного натяжения стандартной жидкости от температуры. 5. Рассчитать по уравнению (И 1,12) поверхностные натяжения исследуемой жидкости при всех температурах. 6. Построить график зависимости поверхностного натяжения исследуемой жидкости от температуры. 7. Определить экстраполяцией критическую температуру. Полученные величины сопоставить со справочными. [c.103]

    Поверхностное натяжение углеводородов и нефтяных фракций является линейной функцией температуры. С повышением температуры оно убывает (рис. 41) и при критической температуре равно [c.91]

    С повышением температуры поверхностное натяжение углеводородов и моторных топлив уменьшается и становится равным нулю при критической температуре [15]. Характер изменения поверхностного натяжения в зависимости от температуры представлен на рис. 8. [c.44]

    Отсюда следует, что и производная полной поверхностной энергии по температуре тоже должна быть равна нулю [см. уравнение (11.27)], т. е. д1]в/дТ = , а это означает независимость полной поверхностной энергии от температуры. Для примера отметим, что вторые производные поверхностного натяжения по температуре для воды II бензола равны соответственно —0,00048 и +0,00012. Так как поверхностное натяжение снижается с повышением температуры, а полная энергия от нее не зависит, то в соответствии с уравнением (11. 19) теплота образования единицы поверхности увеличивается в этом же наиравлении. Эти зависимости показаны иа рис. П.З. При критической температуре исчезает поверхиость и соответственно снижаются до нуля ее энергетические характеристики. [c.30]

    Поверхностное натяжение уменьшается почти линейно с температурой, становясь равным нулю при критической температуре. [c.137]

    Поверхностное натяжение влияет на величину критического числа Рейнольдса при образовании вихрей на границе раздела газ — жидкость [24, 25]. [c.143]


    Из формулы (27) следует, что критическая напряженность поля повышается с увеличением межфазного поверхностного натяжения и уменьшением радиуса капельки. Это понятно, чем больше силы поверхностного натяжения и чем меньше размер капельки, тем она устойчивее и тем большая требуется напряженность поля для ее разрушения. [c.49]

    Р. Меры по уменьшению тумана. Склонность к возникновению и распространению тумана можно уменьшить следующими методами обеспечивать низкие степени пересыщения отсутствие пыли, выноса капель и ионов поддерживать перегрев (например, нагревом 117]) поддерживать малыми температурные напоры поддерживать высокой температуру поверхности конденсата обеспечивать малую толщину парогазовой пленкн, дающую небольшое время диффузии (образование тумана занимает время) увеличение турбулентности может, однако, уменьшать критическое пересыщение обеспечивать отсутствие вторичных веществ, которые уменьшают данление пара па капли или поверхностное натяжение предупреждать запотевание, если туман может возникнуть, для исключения уноса конденсата газом или паром, [c.363]

    При <0,15 не следует пользоваться табл. 6. Для очень малых нагревателен силы поверхностного натяжения намного больше инерционных и гидродинамическая теория для критического теплового потока при кипении в большом объеме неверна. В действительности при очень низких <0,01 отсутствуют пузырьковое кипение и максимум и минимум на кривой кипения. Тогда кривая кипения имеет участок свободной конвекции, переходящий непосредственно в область пленочного кипения (рис. 8). [c.375]

    Если поверхностное натяжение а не уравновешивает Др, то капля разрушается. Критическая напряженность поля определяется выражением [c.22]

    Впервые продукт межмолекуляр-пого взаимодействия, обладающий специфическими свойствами, обнаружили при коксовании каменноугольной смолы Брукс и Тейлор они назвали его мезофазой [144]. Эти исследователи, а затем Федосеев [129] и Гимаев [30] показали, что в результате термообработки каменноугольных и нефтяных пеков ири температурах выше некоторой критической в однофазной массе появляются анизотропные микросферы мезофазы размером 0,1—20 мкм. Сферическая форма вызвана действием сил поверхностного натяжения. Эти микросферы обладают способностью к изменению своих размеров. [c.171]

    Определив критическое поверхностное натяжение смачивания акр, можно также рассчитать работу адгезии W - При линейной зависимости os 0НТ = f (стж-г) можно записать, что [c.26]

    Введение некоторых количеств неорганических солей в водный раствор эмульгатора способствует снижению критической концентрации мицеллообразования (ККМ), повышению солюбилизации эмульгируемых мономеров, снижению поверхностного натяжения и повышению устойчивости образующегося латекса, улучшению его реологических свойств. В отсутствие электролитов образуется латекс, характеризующийся высокой вязкостью, вследствие чего нарушается нормальный отвод теплоты реакции полимеризации. В особенности высокую вязкость имеют латексы, полученные с применением жирнокислотного эмульгатора. В производстве бутадиен-стирольных каучуков применяются хлорид калия и тринат-рийфосфат (НазР04 12НгО), которые вводят в раствор эмульгатора совместно или в отдельности. Выбор указанных электролитов основан на отсутствии их влияния на скорость полимеризации и высаливание эмульгатора. [c.245]

    Дальнейшее деление может быть проведено на основе других характерных свойств соединений. Так, в классе углеводородов можно произвести деление на соединения насыщенные и ненасыщенные, эфиры можно разделить по характеру цепей, прямых или разветвленных, амины—по числу радикалов. Физико-химические свойства растворителей (температура кипения, давление пара, теплота испарения, критические температура и давление, вязкость, плотность, поверхностное натяжение, рефракция, криоскопическая и эбулио-скопическая постоянные) в виде обобщенных формул или отдельных данных указаны в руководстве Вейсбергера Органические растворители [117]. [c.18]

    В прямоугольных координатах, в которых на оси абсцисс нане-, сены значения с ер, а на оси ординат—логарифм натяжения, вышеприведенная функция представляется прямой линией. Межфа.чное натяжение можно также представить графически как функцию концентрации растворенного вещества в состоянии равновесия. Такие диаграммы для систем вода—гексан и уксусная кислота в качестве растворенного вещества и вода—толуол—ацетон представлены на рис. 1-25. Эти системы проявляют свойства, характерные для всех других подобных систем. Наивысшим межфазным натяжением обладает система без растворенного вещества (точка /), в критической точке натяжение уменьшается до нуля. Линии, соединяющие точку с точкой К, представляют концентрации уксусной кислоты в водной фазе и фазе растворителя. Состояние равновесия и соответствующее ему поверхностное натяжение отыскиваются на горизонтальных прямых. Линии концентраций пересекаются, если хорды равновесия на треугольной диаграмме меняют наклон. При небольших наклонах хорд линии концентраций лежат близко друг к другу, при больших—расходятся. Так как вблизи критической точки межфазное натяжение приближается к нулю, при больших концентрациях растворенного вещества система приобретает тенденцию к устойчивому эмульгированию. По форме кривых можно сделать выводы относительно поведения растворенного вещества в обеих фазах. При сильном падении величины поверхностного [c.53]

    При по ыщенир температуры вещество расщиряется, ослабляются силы взаимного притяжения между молекулами внутри вещества и в поверхностном слое. Поэтому с повышением температуры поверхностное натяжение уменьшается. При температурах более высоких, чем нормальная температура кипения данной жидкости, поверхностное натяжение измеряют уже не при атмосферном давлении, а при давлении насыщенного пара. Если результаты измерений представить графически, отложив поверхностное натяжение как функцию температуры (рис. 128), то зависимость для многих веществ оказывается линейной, почти вплоть до критической температуры, при которой поверхностное натяжение становится равным нулю, так как исчезает различие между жидкостью и паром. Основываясь на линейном уменьщении поверхностного натяжения с повышением температуры, Менделеев установил (1860) существование такой температуры, при которой поверхностное натяжение становится равным нулю. Выще этой температуры вещество уже не может находиться в жидком состоянии. Эту температуру Менделеев назвал температурой абсолютного кипения (позднее ее стали называть критической температурой). [c.357]

    Удельная поверхность и пористая структура катализатора сильно зависят от способа удаления растворителя из осадка, геля, суспензии нли из пропитанного носителя. Этот способ выбирают с учетом того, в какой форме катализатор будет в дальнейшем использован. Часто применяют непосредственное выпаривание, но оно может привести к сегрегации компонентов. На микроструктуру также влияет скорость сушки, и ее следует регулировать. Интересные результаты получаются при замораживании силикагелей, содержащих большое количество воды. Замороженный продукт уплотнения геля оксида кремния становится не-растворпмым в воде, и после оттаивания оксид кремния приобретает структуру кристаллов льда. Так, если инициировать рост дендритных кристаллов льда, то можно получить волокна оксида кремния [21]. Методом замораживания были получены силикагели с чрезвычайно высокими удельными поверхностями порядка 1000 м /г. Замена воды в геле на спирт и выдерживание его при критических условиях в автоклаве привели к получению образцов с высокой удельной поверхностью и очень большими порами [22]. Использование для промывки геля жидкостей с более низким, чем у воды, поверхностным натяжением, например ацетона, предотвращает обусловленное капиллярными силами захлопывание узких пор при сушке геля. Одним из недостатков способа получения твердых веществ с высокой удельной поверхностью через образование геля является низкая концентрация твердого вещества в растворе. Приходится удалять большие количества растворителя, что требует дополнительных затрат. Кроме того, образуется чрезвычайно рыхлый порошок, и перед дальнейшим использованием его обычно формуют. [c.23]

    Здесь 7 р — критическая удельная тепловая нагрузка, вт/я -, ц., — динамический коэффициент вязкости жидкости, н-сек1м -, Лш — теплопроводность жидкости, от1(м град) р, и рп — плотность жидкости и пара, кг/ж — теплота парообразования, дж кг Гнас — температура насыщения, К а — поверхностное натяжение на границе раздела между жидкостью и паром, /л — теплоемкость жидкости, дж1 кг град). [c.575]

    В воздухе, содержащем пары воды, образуется туман при температуре 270,8 К (ко )ффицисит пересыщения у равен 4,21). Рассчитайте критический размер ядер конденсации и число молекул, содержащихся в них. Поверхностное натяжение воды [c.33]

    В. Критический тепловой поток. Критический тепловой поток при кипеиии в большом объеме изменяется, когда небольшое количество второго компонента добавлено в чистую жидкость. Он может быть выше или ниже, чем для любого из компонентов. Как и с коэффициентом теплоотдачи при пузырьковом кипении, изменение, вызванное вторым компонентом, велико, хотя изменение физических свойств (поверхностного натяжения вязкости и плотности) небольшое. Поэтому невозможно предсказать заранее влияние второго компонента на кризис просто подстановкой измененных физических свойств в уравнение для критического теплового потока при кипении в большом объеме, предложенное, например, в (8, 9] (см. 2.7.2). [c.417]

    В более поздней работе Ван Стралена [10] дано объяснение многих явлений, указанных выше. Ван Стрален показал, что в бинарных смесях часто наблюдается максимум критического теплового потока, соответствующий наименьшей скорости роста пузыря и наибольшей величине 1г/ — х1. Низкая скорость роста пузыря значительно снижает коэффициент теплоотдачи от поверхности нагрева к кипящей жидкости при существенном росте перегрева стенки. Критический тепловой поток можно рассматривать как сумму двух членов, один из которых обусловлен прямым парообразованием на поверхности нагрева, а второй — конвекцией горячей жидкости от поверхности нагрева, связанной с косвенным испарением в пузырь на расстоянии от поверхности нагрева. В [16, 17] предполагается, что даже для чистых жидкостей второй член существен. В [17] изучалось влияние характеристики /, которая названа параметром конвекции и представляет собой баланс сил инерции, поверхностного натяжения и вязкости  [c.417]

    Более детальное и глубокое экспериментальное исследование закономерностей заводнение трещиновато-пористых коллекторов проведено А. А. Кочешковым, Д. Ш. Везировым и Ш. Я. Коджа-евым. Указанные исследования прежде всего экспериментально установили факторы, определяющие заводнения трещиноватопористых коллекторов. Результаты исследований показали, что один из основных параметров заводнения трещиновато-пористых коллекторов — скорость нагнетания воды и что существует критическая скорость, превышение которой приводит к резкому снижению безводной нефтеотдачи. Конечная нефтеотдача от скорости нагнетания воды не зависит. Установлено также, что при одних и тех же условиях эффект от капиллярных сил тем выше, чем больше поверхностное натяжение. На показатели заводнения оказывает существенное влияние отношение вязкостей нефти и воды. При одном и том же отношении вязкостей показатели заводнения ухудшаются с увеличением абсолютных значений вязкостей нефти и воды. [c.106]

    На поверхностное иатяжение молекулярных растворов влияет ряд факторов (концентрация растворенного вещества, температура, давление и т. д.). Растворенные вещества могут изменять поверхностное иатяжение, и они подразделяются на поверхностно-активные и поверхностно-инактивные. Следует всегда иметь в виду, что с повышением температуры происходит у.меньшение плотности упаковки молекул, снижается энергия межмолекулярных взаимодействий, в результате чего снижается поверхностное натяжение в нефтяных системах. При критической температуре оно равно нулю. [c.125]

    Предложены полуэмннрические соотиошеиия, более точно оин- сывающие температурную зависимость поверхностного натяжения, чем соотношение (П. 23). Так как при критической температуре 0 = 0 (это было показано Д. И. Менделеевым) и, как установил венгерский ученый Л. Этвеш, линейной зависимости от температуры более точно следует параметр (иногда называемый мольной поверхностной энергией), то можно записать  [c.29]

    Как видно из данных табл. П1. 1, закономерности адсорбции иа древесном угле определяются, главным образом, межмолекуляр-ньши взаимодействиями веществ в конденсировапном состоянии (силами когезии). С ростом когезионных сил увеличиваются поверхностное натяжение, температура кипения, критическая темпе- [c.144]

    Изотермы иоверхностного натяжения коллоидных ПАВ отличаются от изотермы истинно растворимых ПАВ резким понижени- ем а с увеличением концентрации н наличием излома на изотерме в области чрезвычайно малых концентраций, отвечающих истинной растворимости (лг 10 ч-10 моль/л), выше которых поверхностное натяжение остается практически постоянным. Концентрация а точке излома соответствует критической концентрации мицеллообразования (ККМ), выше которой в растворе самопроизвольно протекают процессы образования мицелл и истинный раствор переходит в ультрамикрогетерогенную систему (золь). [c.293]

    Примером термодинамически устойчивых систем с адсорбцион-ио-сольватным фактором являются растворы неионогеиных ПАВ и ВМС. Ориентирование лиофильных частей молекул к растворителю обеспечивает резкое снижение поверхностного натяжения до значений, меньших критического значения (VI. 32). Полярные части молекул обращены в водную среду, а неполярные радикалы — в органическую. Из твердых веществ большой гидрофильностью обладают оксиды многих элементов, например, кремния, алюминия, железа. Поверхность частиц оксидов в воде обычно покрыта гидроксильными группами (гидроксилирована), которые сильно взаимодействуют с водой, образуя гидратные слои. Интересно, что для оксидов факторы устойчивости могут изменяться в зависимости от pH среды. Особенно это сильно выражено для диоксида кремния. Например, гидрозоль кремнезема в области pH 7,0—8,0 устойчив, главным образом, благодаря адсорбционно-сольватному фактору. Он не коагулирует при добавлении электролита даже в [c.338]

    Агрегативная устойчивость эмульсий может обусловливаться многими факторами устойчивости. Для них характерно и самопроизвольное диспергирование при определенных условиях. Они могут самопроизвольно образовываться в двухкомпонентной гетерогенной системе (без эмульгатора) при температуре смешения, близкой к критической. Как уже отмечалось, гетерогенная система вода — фенол самопроизвольно переходит в термодинамически устойчивую эмульсию при температуре, несколько ниже критической. В этих условиях межфазное натяжение настолько мало (меньше 0,1-10 Дж/м ), что оно полностью компенсируется энтропийным фактором- Как известно, таким свойством еще обладают только коллоидные ПАВ и растворы ВМС. Сильное понижение поверхностного натяжения при добавлении ПАВ (третьего компонента) в систему позволяет получить термодинамически устойчивые (самопроизвольно образующиеся) эмульсии и в обычных условиях, а не только при критических температурах смешения. Это свойство эмульсий играет большую роль, например, в моющем действии, резко уменьшающем применение механичесгшх средств п ручного труда. [c.346]

    В воздухе, содержащем пары воды, образуется туман при температуре 269 К, когда коэффициент пересыщения становится равным 3,71. Рассчитайте критический размер ядер конденсации и число молекул, содер ащихся в них. Поверхностное натяжение воды 76,4 мДж/м , плотность воды 1 г/см . [c.181]


Смотреть страницы где упоминается термин Поверхностное натяжение критическое: [c.264]    [c.180]    [c.23]    [c.70]    [c.25]   
Коллоидная химия 1982 (1982) -- [ c.116 , c.219 ]

Адгезия жидкости и смачивания (1974) -- [ c.43 , c.136 , c.347 , c.365 , c.370 ]

Иммунология Методы исследований (1983) -- [ c.133 , c.134 ]




ПОИСК





Смотрите так же термины и статьи:

Адгезионная критическое поверхностное натяжение смачивания

Адсорбция и критическое поверхностное натяжение

Влияние сополимеризации на критическое поверхностное натяжение

Зависимость поверхностного натяжения от давления в окрестности критической точки

Зависимость поверхностного натяжения от температуры в окрестности критической точки

Значения критического поверхностного натяжения по Зисману и By, а также неполярной составляющей поверхностного натяжения для некоторых полимеров в твердом агрегатном состоянии при

Изменение поверхностного натяжения в окрестности критической точки

Краевой угол критическое поверхностное натяжение

Краевые и контактные углы. Критическое поверхностное натяжение смачивания

Критическое натяжение растекания Критическое поверхностное натяжение смачивания

Критическое поверхностное натяжени

Критическое поверхностное натяжение смачивания

Критическое поверхностное натяжение смачивания траис-Кротоновая кислота

Критическое поверхностное натяжение фторполимеров

Поверхностное натяжение в интервале между температурой кипения и критической температурой

Поверхностное натяжение и критическая температура

Поверхностное натяжение критических параметров

Поверхностное натяжение критическое значение

Поверхностное натяжение при критической температуре растворимости

Поверхностные свойства критическое натяжение смачивания

Расплавы критическое поверхностное натяжение



© 2025 chem21.info Реклама на сайте