Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пористое стекло поверхностные группы, взаимодействие с водой

    Исходя из механизма, предложенного ранее, следует ожидать, что только те водородные связи, которые образуются со свободными группами ОаН, будут давать сжатия. Полоса поглощения в ИК-спектре, обусловленная поверхностными группами ОН пористого стекла, асимметрична. Часть полосы, отвечающая колебаниям высокой частоты, является результатом присутствия свободных групп ОлН, а широкая компонента полосы при более низкой частоте, вероятно, обусловлена присутствием связанных водородной связью групп ОН другого вида (ОдН). Результаты, полученные с тонким (0,25 мм) пористым стеклом [163], откачанным при 450° С, свидетельствуют о том, что при адсорбции воды образуется система водородных связей. Сдвиг частоты на 290 см- указывает на образование связей немного более слабых, чем в случае ацетона. Корреляция для этой широкой полосы затруднительна. Последняя может быть связана с изменениями в первоначальной полосе поглощения ОН (как в случае ацетона) или может быть полностью обусловлена вновь адсорбированной водой. Наблюдение за изменениями полосы при 3730 сж показало, что по мере того как адсорбируется вода, полоса становится слабее, что, возможно, указывает на некоторое взаимодействие с группами ОдН. Со стороны больших [c.293]


    Поверхностные гидроксильные группы, локализованные на примесных атомах кремнеземов, также принимают участие во взаимодействии с адсорбированными молекулами. При этом проявляется различие в свойствах этих групп и поверхностных силанольных групп. Установлено, что при относительно небольшом давлении пара воды (р=0,1 мм рт. ст.) над пористым стеклом [c.165]

    В работе [19] в спектре молекул воды, адсорбированных пористым стеклом после откачки при 800° С, установлено при малых заполнениях существование трех полос поглощения с максимумами 3665, 3645 и 3600 см . Предполагается, что эти полосы поглощения соответствуют молекулам, взаимодействующим с различными центрами поверхности пористого стекла. Нельзя отрицать также возможности попадания в эту область полос поглощения адсорбированных молекул воды, связанных водородной связью с поверхностными гидроксильными группами. [c.223]

    Процессы молекулярной адсорбции и других, более сложных взаимодействий молекул с адсорбатом наблюдались также при адсорбции пористым стеклом аммиака. В работе [7] было впервые установлено, что полоса поглощения поверхностных гидроксильных групп при адсорбции аммиака почти полностью исчезает и в результате откачки адсорбированных молекул при 20° С восстанавливается до первоначальной интенсивности. Однако, в спектре после этого оставались полосы поглощения валентных колебаний групп ЫН [5, 8]. Подобное изменение спектра наблюдалось также при адсорбции на пористом стекле метанола в работах [1, 5, 8—10] и аммиака в работах [11, 12]. Сохранение в спектре полос поглощения адсорбированных молекул аммиака и метанола после откачки образца авторы работ [5, 8—10] объясняли, как и в случаё воды, адсорбцией этих молекул не на гидроксильных группах поверхности, а на некоторых центрах [c.191]

    Роль атомов бора в адсорбции молекул воды подробно исследована в работе [63]. Участие поверхностных гидроксильных групп 51—ОН и В—ОН во взаимодействии с адсорбированными молекулами воды уже рассматривалось (см. главу V). Прямое указание на сильную адсорбцию воды на примесных атомах борэ пористого стекла, обработанного при высоких температурах, т. е. сильно дегидроксилированного, дают спектры, приведенные на рис. 75. Исходный спектр пористого стекла, обработанного НР, указывает на полное удаление гидроксильных групп. Адсорбция молекул воды (рис. 75) приводит к появлению в спектре полосы поглощения групп В—ОН, которые четко проявляются в спектре полностью обезвоженного образца. При этом образуются вновь также и силанольные группы, однако в меньшем числе по сравнению с их количеством на исходной, не обработанной фтористым водородом поверхности. [c.209]


    Взаимодействие полиэфира с аэросилом исследовалось методом ИК-спектроскопии по специально разработанной методике [126]. Покрытие формировалось на поверхности частиц аэросила с удельной поверхностью 175 и /т. При таком способе приготовления образцов количество пленкообразующего, взаимодействующего с твердой поверхностью, значительно превыщает его объемное содержание, что дает возможность исследовать характер взаимодействия непосредственно на границе полимер — твердое тело методом ИК-спектроскопии. Примененный в данной работе метод приготовления образцов в отличие от методов, предусматривающих многократное отражение луча от зеркальной поверхности, покрытой монослоем полимера [127], или пропитку мономером пористого стекла [128, 129], является более простым и прямым, так как дает возможность исследовать характер взаимодействия с твердой поверхностью пленкообразующих, применяемых в промышленности. Адсорбция олигомера проводилась в течение двух суток при 20°С из 0,5 и 2,5%-ных растворов смолы в ацетоне с последующим добавлением нафтената кобальта и гидропероксида кумола. Полимеризация осуществлялась при 80 °С в течение 3 ч. Обработанный смолой аэросил прессовался в таблетки размером 10X18 мм под давлением 3,5 МПа. Спектры пересчитывали в щкалу оптических плотностей относительно фона поглощения аэросила. В спектре аэросила наблюдается узкая полоса поглощения валентных колебаний свободных поверхностных гидроксильных групп 3750 см 1 и широкая полоса с максимумом около 3500 см , обусловленным поглощением возмущенных адсорбцией воды гидроксильных групп поверхности и связанных друг с другом водородной связью адсорбированных молекул воды [130]. [c.98]

    В последнее время существование на поверхности силикатных адсорбентов центров адсорбции второго рода подтверждено работами но измерению теплоты смачивания силикагелей [32] и спектроскопическими исследованиями пористого стекла, выполненными Фольманом и Йейтсом [8]. Для однозначного решения вопроса о природе центров адсорбции второго рода в настоящее время нет достаточных данных. Однако не вызывает сомнения, что центрами второго рода не могут быть ультрамикропоры или загрязнения поверхности примесями, так как в противном случае трудно было бы объяснить зависимость количества этих центров от температуры предварительной вакуумной тренировки, которая обнаруживается в случае адсорбции хлороформа. Из общепринятых представлений о структуре поверхности пористого стекла следует предположить, что центрами второго рода могут быть атомы кремния или кислорода. Представляется маловероятным, что молекула аммиака, имеющая электроотрицательный атом азота, может присоединяться к электроотрицательному атому кислорода поверхности адсорбента. Более вероятно, что центрами адсорбции для молекулы аммиака служат поверхностные координационно ненасыщенные атомы кремния. Такая точка зрения оправдана тем, что в некоторых случаях, например при взаимодействии кремниевой кислоты с водой, координационное число атомов кремния равно не четырем, как обычно, а пяти или шести [33]. Впрочем, вполне возможно, что при адсорбции различных соединений в качестве центров адсорбции второго рода выступают различные молекулярные группы поверхности силикатного адсорбента. [c.78]


Смотреть страницы где упоминается термин Пористое стекло поверхностные группы, взаимодействие с водой: [c.215]    [c.337]   
Инфракрасные спектры адсорбированных молекул (1969) -- [ c.322 , c.323 , c.325 ]




ПОИСК





Смотрите так же термины и статьи:

Вода поверхностная

Поверхностные воды

Пористые стекла



© 2024 chem21.info Реклама на сайте