Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбенты активные центры

    Различная интенсивность адсорбционных процессов на различных участках поверхности данного адсорбента объясняется неоднородностью поверхности. Каталитическая активность материала обычно связана с адсорбцией реагирующих веществ на активных для данного процесса участках его поверхности, поэтому решающее значение имеет наличие именно этих активных участков (активных центров). Поэтому имеет значение не только адсорбция молекул исходных веществ, но и десорбция образующихся молекул п одуктов реакции. Существенно развитие поверхности, однако даже при значительной поверхности материал не будет активным катализатором, если структура и состояние ее таковы, что на ней нет необходимых активных центров. Вследствие этого для активности катализатора имеет значение не только химический его состав, но, не в меньшей степени, и способ изготовления, от которого зависят состав, структура и состояние поверхности катализатора. Так, специально приготовляемая активная окись алюминия служит хорошим катализатором реакции получения этилена путем дегидратации этилового спирта. Но для получения такой активной окиси алюминия необходимо тщательно соблюдать определенные условия, без чего она при том же химическом составе может не обладать активностью или быть мало активной. [c.495]


    Эти процессы предназначены для производства базовых масел различного уровня вязкости, деароматизированных жидких и твердых парафинов и специальных углеводородных жидкостей. Они основаны на избирательном выделении полярных компонентов сырья (смолистых веществ, кислород- и серосодержащих углеводородов, остатков избирательных растворителей) на поверхности адсорбентов. Высокая адсорбируемость полярных компонентой сырья на активном высокопористом адсорбенте обусловлена ориентационным и индукционным взаимодействием полярных и поляризуемых компонентов сырья активными центрами поверхности адсорбента. В качестве адсорбентов при очистке и доочистке масел применяют природные глины (опоки или отбеливающие земли) и синтетические (силикагель, алюмогель и алюмосиликаты). Активность природных глин повышают обработкой их слабой серной кислотой или термической обработкой при 350—450 °С. Синтетические адсорбенты активнее, но значительно дороже природных. [c.273]

    В настоящее время применяют модифицированные адсорбенты. Активные центры модифицированных адсорбентов имеют одинаковую активность. Способ приготовления модифицированных адсорбентов заключается в следующем  [c.53]

    Итак, теория БЭТ исходят из наличия на поверхности адсорбента активных центров. [c.49]

    Характер активных центров на поверхности металла зависит от его химической природы, способа обработки и чистоты. Необходимо подчеркнуть, что химический состав поверхности играет существенную роль в протекании поверхностных процессов, и при рассмотрении конкретных вопросов химмотологии в области поверхностных явлений следует вносить поправки на особенности химического строения адсорбента. Химическое строение металла подробно рассматривается металловедением [203]. Поверхность металлических деталей представляет собой комбинацию полярных активных участков и олеофильных участков, природа которых определяется в основном дисперсионными силами. Адсорбция молекул некоторых углеводородов, индуцирующих на металле большие дипольные моменты, может способствовать превращению поверхности из неполярной в полярную [204]. [c.181]

    Теория адсорбции, разработанная Лангмюром, исходит из представлений о наличии на поверхности адсорбента активных центров, на которых адсорбируются молекулы адсорбата под действием поверхностных сил. Адсорбированная молекула через некоторый промежуток времени (называемый средней продолжительностью жизни адсорбированной молекулы) удаляется и заменяется другой. Чем активнее адсорбент, тем быстрее поверхность его покрывается мономолекулярным слоем адсорбированного вещества и устанавливается равновесие. [c.109]


    В случае диэлектрических адсорбентов активные центры оказывают очень большое влияние на поляризацию адсорбированных молекул (см. раздел У,6). Эти активные центры имеют ту же природу, что и активные центры, изменяющие притяжение ионов или диполей. Активностью обладают ребра и углы кристаллов, некоторые грани кристаллов, места нарушения решетки в поверхностном слое и особенно участки обрыва роста отдельных кристаллических граней. [c.68]

    При рассмотрении адсорбционного действия углей нужно иметь в виду, что, кроме рассмотренных выше активных поверхностей неполярного характера, имеются также и активные центры, которые работают ио принципу полярных адсорбентов. Но эти центры составляют, по М. М. Дубинину, всего 2% от общей активной поверхности угля, и поэтому их действие оказывается обычно незаметным [74]. Но при очень высокой кратности обработки нефтяного продукта углем деятельность этих центров может стать существенной и сказаться на результатах адсорбционного разделения. Для активированных же углей, имеющих высокое содержание активных минеральных компонентов, например для костяных углей, полярная адсорбционная активность может стать преобладающей и подавить их депарафинирующее действие. Поэтому костяные и другие активированные угли для целей адсорбционной депарафинизации не подходят. Из активированных углей, вырабатываемых в настоящее время промышленностью, для адсорбционной депарафинизации можно применять угли трок БАУ, К АД, АГ-2, АР-3 и др. Из этих марок наиболее подходящим для процесса адсорбционной депарафинизации является уголь марки АР-3. [c.162]

    Здесь I обозначает активный центр. Такое представление справедливо в тех случаях, когда десорбируется то же вещество, которое было адсорбировано, т. е. когда химическая природа вещества в результате адсорбции не меняется. Если это не так, то адсорбент является катализатором. [c.111]

    I - 93,4 °С 2 - 62,2 С 3 - 37,8 °С - постоянная, характеризующая эффективную концентрацию активных центров адсорбента. [c.115]

    Термодинамические исследования координированных систем важны для развития теории жидкого состояния и твердого состояния вещества, для изучения адсорбентов и катализаторов, особенно при установлении структуры активных центров, оптимального состава адсорбентов и катализаторов, а также для развития научных основ технологии в химии. [c.249]

    Следует заметить, что если суммарное дисперсионное взаимодействие молекулы адсорбтива с адсорбентом всегда больше взаимодействия ее с одним активным центром адсорбента, то суммарное электростатическое взаимодействие молекулы адсорбтива может быть и меньше ее электростатического взаимодействия с одним центром адсорбента. Такое явление можно объяснить тем, что отрицательный полюс диполя молекулы адсорбтива, притягиваемый катионом решетки адсорбента, одновременно испытывает отталкивание со стороны соседних с этим катионом анионов, образующих вместе с катионами знакопеременную поверхность адсорбента. [c.87]

    Количество газа, адсорбируемого в результате физической адсорбции, много больше, чем при хемосорбции. Химическая адсорбция происходит только на определенных активных центрах, которые представляют собой незначительную часть поверхности адсорбента. Для физической адсорбции имеет значение только величина поверхности адсорбента, на хемосорбцию оказывает влияние физическое состояние поверхности и ее химический состав. [c.219]

    Удельная поверхность любого пористого вешества (катализатора или адсорбента) определяет количество соединения, адсорбируемого единицей массы этого вещества, и играет главную роль в гетерогенном катализе, определяя величину адсорбции и т. д. Установление величины удельной поверхности позволяет также судить о количестве и протяженности активных центров, о величине активной поверхности, об образовании моно- или полислоя в результате адсорбции, о характере поверхностных реакций,—т. е. способствует пониманию сути гетерогенных каталитических реакций. [c.40]

    Осушка газа твердыми поглотителями основана на явлении адсорбции — концентрирования одного из компонентов паровой или жидкой фазы на поверхности твердого вещества (адсорбента). Природа сил, удерживающих эти компоненты на поверхности адсорбента, полностью не выяснена. Предложено много теорий, объясняющих это явление. Согласно теории Лэнгмюра, на поверхлости твердых адсорбентов имеются участки со свободными остаточными валентностями. Когда адсорбируемая молекула из газовой фазы попадает на незанятый активный центр поверхности, молекула не отталкивается в газовую фазу, а остается связанной с поверхностью. В начальный момент адсорбции существует весьма большое число активных центров и число молекул, связанных поверхностью, превышает число молекул, отрывающихся от нее. По мере покрытия всей поверхности вероятность попадания молекул газа на незанятый активный центр уменьшается, наступает состояние равновесия, при котором скорость адсорбции и десорбции выравнивается. В соответствии с теорией Лэнгмюра, адсорбированное вещество удерживается на поверхности адсорбента в виде пленки мономолекулярно11 толщины. Допускается вместе с тем, что силовые поля адсорбированных молекул могут претерпеть такие изменения, что они будут спо-собн1.[ притягивать к себе второй такой слой, третий и т. д. С повышением давления и понижением температуры количество адсорбированного вещества увеличивается. [c.158]


    Все эти явления указывают, что при каталитических реакциях происходит диспергирование поверхности причина последнего долго не находила объяснений. Теперь, однако, доказано, что молекулы в верхнем адсорбированном слое не фиксированы неподвижно, а могут перемещаться по поверхности в двух направлениях. Благодаря хемосорбции молекулы адсорбированного вещества при таких миграциях могут увлекать с собой атомы адсорбента и перемещать его в другие точки поверхности. Было доказано, что эти миграции направлены к активным центрам, т. е. к местам с большей ненасы-щенностью. В активных центрах происходит поверхностная реакция, в результате которой молекулы реагирующего вещества десорбируются, а атомы катализатора оказываются перенесенными в другое место поверхности. Вследствие таких переносов и разрыхления масса катализатора постепенно теряется. [c.54]

    Дальнейшее развитие представлений об активных центрах в катализе получило в работах акад. А. А. Баландина (1929, 1930). Теория, которую создал и развивал Баландин, получила название муль-типлетной теории катализа. Исходное положение мультиплетной теории заключается в том, что адсорбция реагирующей молекулы на катализаторе обусловливается одновременным взаимодействием молекулы с поверхностью адсорбента по нескольким силовым центрам. Такого типа адсорбцию Баландин назвал мультиплетной адсорбцией. Многоцентровая адсорбция может приводить к деформации молекулы, к ослаблению предельных связей в молекуле, к повышению ее реакционной способности. Однако прочная адсорбция молекулы субстрата может привести к блокированию активных центров и дезактивации катализатора. [c.655]

    Тиофены снижают ёмкость хемосорбента по другим серосодержащим соединениям из-за конкуренции за активные центры на поверхности адсорбента [c.19]

    Изначально в промышленности использовались поглотители, включающие лишь активированный оксид алюминия. Активные центры подобных адсорбентов -поверхностные гидроксильные группы, реагирующие с H I по следующему уравнению  [c.9]

    Поверхность адсорбента неоднородна на некоторых ее участках (активных центрах) энергия взаимодействия молекул газа с адсорбентом значительно больше, чем на других. Активные центры в энергетическом отношении одинаковы. [c.39]

    Адсорбция происходит не на всей поверхности адсорбента, я лишь на активных центрах этой поверхности. Такими центрами [c.347]

    Адсорбционные силы обладают малым радиусом действия, вследствие чего каждый активный центр адсорбирует лишь одну молекулу адсорбтива, и на адсорбенте образуется мономолекуляр-ный слой адсорбтива. [c.348]

    Адсорбированные молекулы газа не сидят прочно на поверхности адсорбента они непрерывно обмениваются с молекулами в газовой сфере, при этом устанавливается динамическое адсорбционное равновесие. Каждая молекула задерживается в течение короткого времени на поверхности, затем в результате флуктуации энергии молекулы отрываются от активного центра, уступая место новой молекуле. [c.348]

    В отличие от поверхности жидкостей, не все точки поверхносте й вердых тел равноценны в отношении их адсорбционной способ-ости. При малых концентрациях газов адсорбция происходит мо-омолекулярно по наиболее активным участкам адсорбента — его активным центрам , представляющим собой отдельные атомы или руины атомов поверхности, силовое поле которых наименее на-ыщено. При адсорбции газов, находящихся при температурах (инее их критической температуры, мономолекулярная адсорбция увеличением давления может переходить в полнмолекулярную. [c.323]

    Наряду с перемещением молекул в объеме пор происходит перемещение молекул по поверхности адсорбента от одного активного центра к другому (фольиеровская или поверхностная диффузия). Это явление объясняется следующим образом. При достаточно низкой температуре молекулы вещества адсорбируются на наиболее активных центрах, совершая при этом колебания. С повышением температуры амплитуда колебаний возрастает и молекула перескакивает на соседние незанятые центры. Для этого процесса требуется определенная энергия активации, и скорость его возрастает с увеличением температуры. [c.251]

    Теоретические основы. Процесс основан на избирательном выделении полярных поверхностно-активных компонентов сырья — смолистых веществ, кислород- и серусодержащпх соединений, полициклических ароматических углеводородов на развитой пористой поверхности адсорбента. Высокая адсорбируе-мость полярных компонентов сырья на активном высокопористом адсорбенте обусловлена ориентационным и индукционным взаимодействием активных центров, находящихся на поверхности адсорбента, с полярными и поляризуемыми компонентами сырья. [c.244]

    Адсорбционные процессы относятся к наиболее сложно описываемым и моделируемым объектам химической технологии в силу того, что требуют в значительной мере более детального подхода к формированию модели в связи с. многообразием кинетических факторов, сопровождающих диффузию сорбата в макро-, мезо- и микропорах сорбента и необходимостью учета как специфических характеристик самого сорбента (например, состав и свойства активных центров, условия регенерации), так и особенностей взаимодействия в конкретной системе адсорбент - адсорбат и на стадии адсорбции, и на стадии регенерации. В связи с этим представляет интерес феноменологическая модель адсорбционного процесса в виде длины зоны массопередачи Lo. Зона массопередачи участок длины (высоты) слоя сорбента, в котором и протекает собственно сорбционный процесс с интегральным учетом всех его реалий, перемещающийся по длине слоя от начала к концу процесса в неподвижном слое сорбента и равный необходи юй высоте слоя в процессах в движущемся или псевдо-ожиженном слоях сорбента. [c.30]

    По Полянн на поверхности адсорбента нет активных центров, а за счет поверхностных адсорбционных сил формируется адсорбционный объем, состоящий из полимолекулярных слоев адсорбируемого вещества. Адсорбционный потенциал н полимолекулярном слое снижается от максимального [> первом слое поверхности до нуля в последнем слое, в котором кончается действие адсорбционных сил. Теория Поляни не дает возможности математически описать ураинение изотермы адсорбции. [c.55]

    Адсорбцию можио рассматривать как взаимодействие молекул адсорбата с активными центрами поверхности адсорбента. Такое рассмотрение этого явления оказалось достаточно общим и удобным, особенно для адсорбции на твердых адсорбентах, когда возникают трудности в экспериментальном определении межфазного натяжения. Кроме того, такая интерпретация адсорбции открывает возможность нсслелвдвания природы адсорбционного взаимодействия. Если отсутствует химическое взаимодействие адсорбата с адсорбентом, то адсорбция, как правило, является результатом самопроизвольного уменьшения поверхностной энергии системы, выражающегося в компенсировании поля поверхностных сил. При наличии специфического сродства адсорбата к адсорбенту, адсорбция возможна вследствие самопроизвольного уменьшения энергии Гиббса всей системы, что может привести даже к увеличению поверхностной энергии. Это возможно в том случае, если изменение химической составляющей энергии Гиббса системы больше изменения поверхностной энергии. При химической адсорбции между адсорбентом и адсорбатом образуется химическая связь, и их индивидуальность исчезает. [c.108]

    В разделе V, мы рассмотрели влияние на адсорбцию всякого рода щелей, полостей, трещин в поверхности и особенно капилляров. На всех этих активных центрах адсорбированные молекулы, связывающиеся неполярными силами Ван-дер-Ваальса, могут прийти в непосредственный контакт со значительно больши.м числом атомов адсорбента, чем на плоской ио-верхности, вследствие чего теплота адсорбции на этих участках окажется значительно выше, чем на плоской поверхности. Многие диэлектрические адсорбенты, на которых адсорбция молекул происходит за счет неполярных сил Ван-дер-Ваальса, обнаруживают благодаря своей структуре довольно неоднородное распределение адсорбирующих участков в отношении прочности образующихся связей. В противном случае получаемые изотермы адсорбции не имели бы характера плавных кривых, а наблюдались скачкообразные подъемы с горизонтальными участками. При этом имела бы место так называемая ступенчатая адсорбция . Уже сам факт существования плавных изотерм ад- [c.66]

    Как мы видели в разделе VI, 2, физическая адсорбция обычных газов на ионных поверхностях происходит вследствие совместного действия сил Ван-дер-Ваальса и поляризации молекул электрическими полями поверхности. Активные центры (раздел V, 12) оказывают влияние на оба эти эффекта. Поэтому реальные неоднородные поверхности ионных адсорбентов, состоящие из различных кристаллографических граней, межкристаллитных границ, ребер, вака.нтных мест и других типов активных участков, будут практически во всех случаях адсорбировать первые молекулы с относительно большой теплотой адсорбции. С увеличением степени заполнения теплота адсорбции будет заметно уменьшаться [177]. Крофорд и Томпкинс [178] при изучении адсорбции сернистого газа, двуокиси углерода и других газов на фтористом кальции и фтористом барии нашли, что теплоты адсорбции уменьшаются с увеличением количества адсорбированного газа. Они приписывают этот эффект неоднородности исследованных поверхностей, а также наличию различных кристаллографических плоскостей. [c.112]

    Каждый активный центр энергетичеоки эквивалентен и может взаимодействовать только о одной молекулой адоорбтии поэтом / иа адсорбенте образуется мономолекулярный слой адоорбтива, который экранирует поверхность адоорбента. [c.24]


Смотреть страницы где упоминается термин Адсорбенты активные центры: [c.190]    [c.323]    [c.117]    [c.8]    [c.279]    [c.120]    [c.45]    [c.45]    [c.126]    [c.31]    [c.69]    [c.110]    [c.23]    [c.24]    [c.24]    [c.40]    [c.348]   
Лабораторная техника органической химии (1966) -- [ c.321 ]




ПОИСК





Смотрите так же термины и статьи:

Активность Активные центры

Активность адсорбента

Активный центр



© 2025 chem21.info Реклама на сайте