Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ароматические углеводороды магнитные свойства

    МАГНИТНЫЕ СВОЙСТВА АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ [c.120]

    В случае графита некоторые магнитные свойства углерода поддаются более отчетливой интерпретации, чем такие электрические свойства, как удельное сопротивление и его температурный коэффициент. Это обстоятельство объясняется тем, что такая величина, как магнитная восприимчивость поликристаллического тела, является лишь суммой восприимчивостей всех электронных орбит, которые содержатся в его структуре. Разница между многоядерными ароматическими углеводородами, обособленными друг от друга в кристалле (подобно многоядерным сеткам, связанным вместе в углеро-дах) силами отталкивания, и более крупными плоскими многоядерными сетками в почти идеальном графите заключается только в том, что различным членам при суммировании магнитных свойств приписывается неодинаковая относительная роль и вместе с тем не требуется добавления многочисленных членов, учитывающих влияние границ. [c.87]


    Очень полезно рассмотреть возможные изменения магнитных свойств внутри некоторого гипотетического ряда ароматических соединений, заключенных между бензолом и графитом. По мере того как в процессе образования более высоких углеводородов размеры молекулы при последовательном присоединении новых колец к бензолу увеличиваются, в эмпирическую формулу Паскаля вводятся добавочные диамагнитные члены. При увеличении молекулярных размеров восприимчивость, рассчитанная на 1 г-атом углерода соединении, на бензольном конце ряда в рамках правил Па- [c.99]

    Рассмотрим вкратце вопрос о природе адсорбционных взаимодействий. Взаимодействия, характерные для сил, действующих между молекулами газов, являются универсальными. Они определяются поляризуемостью и магнитной восприимчивостью или потенциалом ионизации этих молекул, их размерами и рядом других их свойств. С этой точки зрения адсорбент должен был бы влиять одинаково на разные углеводороды, если указанные выше их физические свойства близки. Рассмотрим, например, н. парафин и ароматический углеводород, содержащие равное число атомов углерода в молекуле — гексан и бензол. Потенциалы ионизации и средние поляризуемости у бензола и гексана близки. Но если в случае адсорбции на чистом графите, не содержащем поверхностных окислов, в соответствии с несколько большими значениями потенциала ионизации и средней поляризуемости сильнее адсорбируется гексан, то на кварце и силикагеле наблюдается обратное сильнее адсорбируется бензол. На рис. 1 показаны соответствующие абсолютные (рассчитанные на единицу поверхности) изотермы адсорбции паров бензола и гексана на поверхности графита и гидратированной поверхности кварца. [c.37]

    Общая магнитная восприимчивость Хм определяется экспериментально измерением силы, с которой образец диамагнитного вещества выталкивается из магнитного поля заданной напряженности. Магнитная восприимчивость модельного соединения с локализованными связями у вычисляется как сумма вкладов отдельных структурных элементов молекулы (атомы, связи, группы атомов, электронные пары и т. д.). Экзальтация диамагнитной восприимчивости Л (см. табл. 1.2) представляет собой разность этих величин (Л = х —Х ,) и рассматривается [72] как непременное свойство ароматических соединений. Накопленный материал не противоречит такому заключению, а сравнительная простота определения, применимость к соединениям различных классов, нечувствительность к влиянию побочных факторов делает экзальтацию диамагнитной восприимчивости ценным критерием ароматичности. Его недостатком является необходимость перенесения расчета магнитной восприимчивости по аддиативной схеме, правомерность которого показана для реальных неароматических соединений, на гипотетические, не существующие в действительности модели типа циклогексатриена. Такой переход всегда таит в себе возможный источник ошибок, тем более что и для реальных соединений встречаются аномалии. Так, для циклогептатриена и циклопентадиена получены значения, согласно которым они должны быть отнесены к ароматическим соединениям (Л = 8,1 и 6,5 соответственно). Это противоречит всем другим данным для этих соединений и потребовало для объяснения привлечения дополнительных гипотез [72]. Если сравнить величины экзальтации диамагнитной восприимчивости на одно кольцо (табл. 1.2), видно, что ароматические углеводороды в такой шкале располагаются в прямо противоположной последовательности, чем в шкале ЭР на л-электрон (табл. 1.1), согласующейся с совокупностью других данных. [c.30]


    Электрические свойства йодных комплексов ароматических углеводородов были изучены Коммандером и Холлом [89], а магнитные свойства — Зингером и Коммандером [157]. Они изучили йодные комплексы пирена и перилена. Для последнего комплекса удалось получить монокристаллы и измерить их удельное сопротивление при комнатной температуре. Оно оказалось равным 8 ом-см. Энергия активации проводимости была очень мала 0,019 эв. Для пиренового комплекса измерения проводились только на таблетках, причем удельное сопротивление было равно 75 ом-см, а энергия активации 0,14 эв. Авторы приписали сигнал в спектре электронного парамагнитного резонанса носителям заряда, показав, что концентрация неспаренных спинов имеет точно такую же температурную зависимость, как и электронная проводимость. Эта зависимость для йодного комплекса пирена показана на рис. 19. При низких температурах, когда проводимость имеет энергию активации, равную только 0,07 эв вместо 0,14 эв для высоких температур, обнаружено постоянство концентрации спинов. При повышении температуры количество спинов растет по экспоненциальному закону с той же энергией активации, что и проводимость. Идентичность неспарен- [c.48]

    Дело в том, что определение понятия ароматичность , ясно и недвусмысленно сформулированное в XIX в., к нашему времени претерпело не ревизию, но существенное уточнение и углубление стало известным, что электронная сущность ароматичности — кольцевое перекрывание / -орбиталей, приводящее к формированию делокализованной орбитали, охватывающей цикл, обусловливает появление двух групп макроскопических свойств соединения, а именно 1) химических, состоящих в том, ароматическое соединение лишь в малой степе проявляет склонность к присоединению, характерную для ненасыщенных систем, а взамен обнаруживает склонность к электрофильному замещению (это те свойства, которые лежали в основе классического представления об ароматичности) 2) специфичесю спектральных особенностей, среди которых особенно важны и характерны особенности спектров ЯМР. Существо последних состоит в том, что в магнитном поле в молекуле ароматического соединения индуцируется кольцевой ток. Магнитный эффект последнего вызывает весьма существенные и характерные изменения величин химических сдвигов близлежащих ядер. В частности, в углеводородах характерный диапазон химических сдвигов протонов, присоединенных к ароматическим ядрам, составляет 7 -ь 8 м.д., тогда как для протонов в винильных положениях — 4 6 м.д. [c.450]

    Подвижность двух л-электронов, находящихся на более высоком энергетическом уровне, может быть выявлена при помощи магнитных измерений. Так, для циклооктатетраена не обнаружен кольцевой ток, который должен был бы вызывать повышенную магнитную восприимчивость как это, например, наблюдается в случае бензола Метод ядерного магнитного резонанса очень удобно использовать для определения ароматического характера, обусловленного циркуляцией делокализованных электронов по кольцу, что обеспечивает ароматичность протонов в бензоле. В углеводороде же XLV имеются как внешние, так и внутренние атомы водорода. Внутренние протоны сильно экранированы, тогда как внешние открыты и обеспечивают ароматический характер системы С дН д. Порфирины обладают одиннадцатью двойными связями нахождение двух электронов на более высоком энергетическом уровне должно приводить к возникновению ароматических свойств, которые и были обнаружены у порфиринов. [c.92]


Смотреть страницы где упоминается термин Ароматические углеводороды магнитные свойства: [c.35]    [c.442]    [c.142]    [c.137]    [c.465]    [c.450]    [c.47]   
Полициклические углеводороды Том 1 (1971) -- [ c.180 ]




ПОИСК







© 2025 chem21.info Реклама на сайте