Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение понятия ароматичности

    Вопрос о том, обладает ли тропилий-ион ароматическим характером, зависит от определения понятия ароматичности. Если ароматичность предполагает наличие свойств, присущих исключительно циклической системе сопряженных тс-электронов и, следовательно, отсутствующих у открытых цепей или у не вполне замкнутых аналогов, то тропилий окажется ароматичным. Дополнительно к стабильности, которая указывает на высокую энергию резонанса и симметричное распределение заряда, ароматический характер наглядно проявляется также в реакциях обмена. Ион тропилия, несущий положительный заряд на каждом из его семи углеродных атомов, может образовывать ковалентные связи [c.54]


    Фундаментальной проблемой в данном вопросе является определение понятия ароматичность . По-видимому, лучшее определение следующее ароматическим является то соединение, которое значительно стабильнее, чем можно было бы ожидать для гипотетической модельной молекулы, имеющей ту же структуру и фиксированное распределение электронов, отвечающее нормальным простым и двойным связям. Разность в энергиях между реальной молекулой и модельной называется энергией де локализации . Экспериментальным путем установлено, что ароматические соединения менее реакционноспо-собны, чем можно было бы ожидать на основании модели с фиксированными связями. Ароматические соединения чаще вступают в реакции замещения (с сохранением ароматиче- [c.16]

    Определение понятия ароматичности [c.17]

    В обзорной работе [146] отмечается, что ни один из предложенных индексов ароматичности не избегает противоречия с химическим понятием об ароматичности, как склонности к реакциям замещения, а не присоединения. Эти противоречия связаны с определением индексов ароматичности из свойств основного состояния молекул. Поэтому предложено разделить понятия ароматичности и стабильности молекул и определять ароматичность, основываясь на разности в энергиях исходных молекул и продуктов реакции. [c.236]

    Такую оценку можно использовать и для заряженных систем Устойчивость соединения к действию окислителей или других электрофильных агентов обычно зависит от агрессивности последних и от особенностей строения субстрата В связи с этим долгое время понятие ароматичности формулировалось не всегда достаточно однозначно В 1931 г на основании представлений квантовой механики Хюккель дал определение, позволяющее производить отнесение той или иной системы к ароматической Согласно этому определению ароматической будет замкнутая плоская система, содержащая 4л -Ь 2п-электронов (где л = О, 1, [c.71]

    Поэтому необходимо уточнить, что именно в настоящее время подразумевается под понятием ароматичность . Одно из определений следующее ароматический — это обладающий химическими свойствами, аналогичными свойствам бензола. Считается, что циклическая молекула с сопряженной системой связей, устойчивость которой значительно больше, чем устойчивость гипотетической классической структуры, обладает ароматическим характером. [c.217]

    Этот пример показывает, что на базе модели валентных связей, дополненной резонансными представлениями, трудно построить удовлетворительную теоретическую концепцию ароматичности. Существенно лучшие результаты могут быть получены, если дополнить указанную модель определенными представлениями симметрии. Однако при этом в значительной мере теряются ее простота и наглядность. Поэтому при анализе проблемы ароматичности удобнее пользоваться моделями, основанными на методе МО, так как при этом понятие ароматичности находит более простую и естественную теоретическую интерпретацию, а также получает объяснение эмпирическое обобщение, согласно которому для наиболее типичных ароматических циклов характерно наличие шести я-электронов (секстета). [c.66]


    В действительности существует постепенный переход от а )ома-тических циклов к неароматическим. При этом определение точного содержания термина ароматичность оказывается не столь простым делом. Иногда делаются попытки связать понятие ароматичности только с химическими свойствами, полагая, что соответствующие особенности характерны только активированному состоянию. Такая точка зрения неверна в принципе, поскольку как раз при активации электронная структура ароматического цикла нарушается и теряет свою ароматическую специфику. Как будет показано ниже, главная особенность реакционной способности ароматических систем заключается именно в стремлении сохранить или восстановить энергетически выгодную электронную структуру исходного состояния. [c.72]

    Все эти исследования металлоорганических соединений переходных металлов внесли определенный вклад в решение общих вопросов теоретической органической химии развитие понятия ароматичности, стабилизация (фикс ация) на переходных металлах термодинамически нестабильных структур (циклобутадиен, плоский циклооктатетраен и т. п.), вопросы валентной таутомерии и т. д. [c.5]

    О прототропной таутомерии, рассмотрены теории кислот и оснований и различные функции кислотности. Во второй главе ( Свойства атомов и связей ) приведены важнейшие свойства химических элементов и их изотопов, длины связей, вандерваальсовы радиусы атомов, углы между связями, энергии разрыва связей, силовые постоянные, барьеры инверсии и внутреннего вращения, дипольные моменты связей и различных функциональных групп обсуждается понятие ароматичности. Глава Кинетика и термодинамика содержит сведения и определения, касающиеся параметров активации и кинетики типичных реакций замещения, сольволиза и присоединения, мономолекулярного элиминирования и разложения в газовой фазе, моиомолекулярных перегруппировок и изомеризации, а также окислительно-восстановительных реакций в водных растворах. В ней приведены краткие данные о кинетических изотопных эффектах, главным образом водорода. В эту главу включены также основные уравнения принципа линейности свободных энергий и для многих реакций и заместителей приведены соответствующие константы (Гаммета, Тафта, Брауна и т. п.). [c.6]

    Энергетические критерии ароматичности. Энергия резонанса. Для определения количеств, меры А., характеризующей повыш. термодинамич. устойчивость ароматич. соед., было сформулировано понятие энергии резонанса (ЭР), или энергии делокализации. [c.201]

    Понятие об ароматичности. Ароматический ряд охватывает все карбоциклические соединения, в молекулах которых присутствует специфическая группировка атомов — бензольное кольцо. Эта группировка атомов обусловливает определенные физические и химические свойства ароматических соединений, их ароматический характер. [c.293]

    Дело в том, что определение понятия ароматичность , ясно и недвусмысленно сформулированное в XIX в., к нашему времени претерпело не ревизию, но существенное уточнение и углубление стало известным, что электронная сущность ароматичности — кольцевое перекрывание / -орбиталей, приводящее к формированию делокализованной орбитали, охватывающей цикл, обусловливает появление двух групп макроскопических свойств соединения, а именно 1) химических, состоящих в том, ароматическое соединение лишь в малой степе проявляет склонность к присоединению, характерную для ненасыщенных систем, а взамен обнаруживает склонность к электрофильному замещению (это те свойства, которые лежали в основе классического представления об ароматичности) 2) специфичесю спектральных особенностей, среди которых особенно важны и характерны особенности спектров ЯМР. Существо последних состоит в том, что в магнитном поле в молекуле ароматического соединения индуцируется кольцевой ток. Магнитный эффект последнего вызывает весьма существенные и характерные изменения величин химических сдвигов близлежащих ядер. В частности, в углеводородах характерный диапазон химических сдвигов протонов, присоединенных к ароматическим ядрам, составляет 7 -ь 8 м.д., тогда как для протонов в винильных положениях — 4 6 м.д. [c.450]

    В сумме значения всех 1Т-порядков дают число 3, т.е. три пары связывающих тт-электронов. Это число 1Т-электронов отвечает известному правилу Хюккеля, лежащему в основе теоретического определения понятия ароматичности. Если вспомнить, что фуроксановое кольцо плоское и, следовательно, оно удовлетворяет и другому требованию ароматичности, то с позиции этих критериев следовало бы признать рассматриваемую систему ароматической. Однако, во-первых, часть этого секстета 1Т-электронов выходит за пределы кольца на внециклическую связь N0, а, во-вторых, тт-электроны секстета почти не распространяются на соседнюю внутрнциклическую связь N0, которая, следовательно, почти ие участвует в делокализации тт-электронов и фактически прерывает кольцевую цель сопряжения. Наглядно распределение тт-электронов в фуроксановом кольце иллюстрируется штрихами и точками разной интенсивности (см. схематическое изображение 16) приведены также округленные значения тг-порядков связей. С точки зрения такого распределения электронов фуроксановая система представляет собой своего рода незамкнутую цепь сопряжения ОМССМО, перехваченную чисто простой связью между первым и предпоследним атомами цепи. Поэтому об ароматичности фуроксанового кольца на основании геометрических параметров и электронного распределения можно говорить лишь с известными ограничениями, хотя другие физические и химические свойства, как будет видно из следующих разделов, определенно указывают на ароматический характер системы. [c.31]


    Цель этой главы — выявить иекоторые факторы, которые обусловливают схожесть во многих отношениях соединений со столь разными физическими и химическими свойствами. В центре наших изысканий будет понятие ароматичности. Для этого понятия существует несколько определений. Мы не будем их перечислять, а постараемся вывести эти определения, пусть иногда и перекрывающиеся . [c.558]

    Современное состояние проблемы ароматичности весьма противоречиво. С одной стороны, параллельно с развитием практической химии ароматических соединений уточняются и углубляются экспериментальные и теоретические основы концепции ароматичности. С другой стороны, продолжают обсуждаться возражения против этой концепции и предлагаются вее новые типы и разновидности ароматичности, как правило, несовместимые с базовой концепцией. Главные возражения, выдвинутые в 1970-е годы, состоят в том, что ароматичность — не физическая величина, которую можно был бы непосредственно измерить [128], и что понятие ароматичности не ийеет единого содержания, будучи разнородным конгломератом, подлежащим расчленению [75, 127]. Вопросы Ароматичность — миф или реальность [75], Ароматичность — упражнение в хй-мическом пустословии , [129], Ароматичность не в моде [130], Ароматичность — теория или миф [131] стали заголовками или тезисами публикаций, а изобилие типов ароматичности— объектом для шуток ( шизоароматичность [128]). Даже в работах, защищающих полезность понятия ароматичности [19, 67, 130], подчеркивается наряду с широтой и общностью его расплывчатость, физическая неоднородность и невоз-мржность более или менее строгого определения. [c.43]

    Считают, что бензол является ароматическим соединением, поскольку циклическое сопряжение приводит к большой устойчивости его молекулы. Причины этого рассмотрены выше с точки зрения как теории резонанса, так и теории молекулярных орбиталей (МО). В этом смысле слово ароматичность означает особую устойчивость молекулы, вызванную циклическим сопряжением. Иногда используют другие определения ароматичности в которых особое внимание уделяется некоторым иным особым свойствам бензола и его производных. В данной книге понятие ароматичности ограничено только рассмотрением стабилизации молекулы за счет со1пряжения (имеется в виду лишь та часть общей устойчивости, которая связана с циклическим сопряжением). [c.35]

    Из приведенного сравнения видно, что отличительные признаки смол заключаются в растворимости в алканах (а также в углеводородах нефтн), возможности разделения на узкие фракции однотипных групп веществ (например, моноциклические, бициклические и др.), малая степень ароматичности, поЛидисперсность и отсутствие структуры. Смолы представляют собой вещества, занимающие область между углеводородными маслами и асфаль-тенами. Именно благодаря полидисперсности, широкому интервалу молекулярных масс, отсутствию относительно сформированной молекулы,, небольшому размеру и малой степени ароматичности, межмолекулярные взаимодействия у них не приобретают решающего значения. Поэтому их можно разделить на фракции одноптипиых веществ. Вследствие этого в книге [242] предложены критерии, позволяющие более четко определить понятое асфальтены и смолы. К смолам можно отнести растворимые в углеводородах нефти высокомолекулярные гетероатомные полидисперсные бесструктурные соединения нефти, которые можно разделить на узкие фракции однотипных соединений. Начиная с определенного размера и степени ароматичности относительно сформированных полициклических молекул, решающим фактором становится меж-молекулярное взаимодействие, приводящее к формированию структуры (в известной степени сравнимой с процессом кристаллизации у полимеров), степень упорядоченности которой зависит от их химической природы. [c.269]

    Отличительной особенностью и важнейшим свойством ароматических макроциклов - порфиринов, азапорфиринов и фталоцианинов (НгФц) - является их низкая конформационная подвижность. Из-за отсутствия конформационных переходов химические реакции с их участием приобретают необычные свойства, которые нельзя удовлетворительно описать классическими структурными, кинетическими и термодинамическими теориями [1-11]. Вследствие высокой ароматичности (порядки связей С=С и С=М-связей в макроцикле составляют >1,5) обычные Н2П имеют в растворе плоскую конформацию. Значительное нарушение плоской конформации и переход к экстремально неплоской форме требует затрат энергии сопряжения в 16-членном макрокольце Н2П, которые составляют 1600 кХ моль в газовой фазе. В растворе и твердой фазе она, по-видимому, меняется мало. Вот почему есть основания полагать, что в переходном состоянии реакций образования и диссоциации металлопорфиринов существенное искажение плоских макроциклов порфиринов невозможно. Кинетические свойства Н2П [11] полностью подтверждают сказанное. Необычные кинетические свойства обусловлены наличием у молекул Н2П "жесткого" макроциклического эффекта (МЦЭ). Автором [8, 9] дано физическое обоснование и определение этого понятия. [c.326]

    Концепция ароматичности, н в первую очередь, ароматического секстета электронов, была развита для то-го, чтобы отразить некоторые аспекты химического поведения определенного класса молекул, в особенности относящиеся к их реакционной способности. На язык электронных представлений она была впервые переведена в теориях химии ароматических молекул, развитых Ингольдом [1] и Робинсоном [2]. Позднее, около 1930 г., Хюккелем, Полингом и другими было показано соответствие этих теорий квантово-физическим представлениям об электронах. С тех пор, и все в большей степени, ароматичность ассоциировалась одновременно с физическими свойствами молекул (термохимической энергией резонанса, диамагнитной восприимчивостью) и с типично химическими свойствами, связанными с реакциями и реакционной способностью. Кроме того, теоретически предсказанная связь между делокализацией тс-электронов и ароматическими свойствами привела к осознанию того, что ароматичность можно ожидать во всех случаях, когда условия стереохимии, наличие пригодных для использования орбит и число электронов делают возможной делокализацию электронов в циклической системе. С этой точки зрения важен не тип атомов, участвующих в делокализованной системе, а тип орбит. Можно рассматривать 1,3, 5-триазин и боразол (ВзНзНб) как вещества, имеющие качественно тот же ароматический характер, что и бензол, хотя и слабо проявляющийся. Дальнейшее расширение понятия приводит к тому, что трополон (I) [3] можно рассматривать как ароматическую систему, а циклопентадиенильные кольца в ферроцене (И) как обладающие ароматичностью в результате образования комплекса. [c.31]

    Удобным графическим приемом для определения уровней энергии МО аннулена является круг Фроста. Если правильный Л -угольник, отвечающий молекуле или, иону, вписать в круг с радиусом 2 так, чтобы одна из вершин находилась в нaи низшей точке, то точки, в которых вершины соприкасаются с кругом, соответствуют уровням энергии (а- ), а горизонтальный диаметр —нулевому уровню (рис. 1.1). Как видно из рис. 1.1, трех- и четырехчленные системы (Л —3, 4) имеют по одной связывающей орбитали, а пяти-, шести-, семи- и вось - мичленные (Л/ = 5- 8)—по три связывающие орбитали. Следовательно, первые две циклические системы будут обладать повышенной стабильностью при наличии двух, а Остальные — при наличии шести л -электронов. Таким образом, правило сек -стета электронов, эмпирически найденное для бензола и подоб ных ароматических соединений и носившее первоначально формальный характер, вытекает как частный вывод из правил Хюккеля. Позже к представлению об ароматичности как стабилизаций сопряженной циклической / системы при наличии Ап+2 л-электронов было добавлено, понятие об антиароматичности [15] как дестабилизации системы при наличии 4/г я-электронов и неароматичности как отсутствии стабилизации или дестабилизации. - [c.14]


Смотреть страницы где упоминается термин Определение понятия ароматичности: [c.450]   
Смотреть главы в:

Химия и технология промежуточных продуктов -> Определение понятия ароматичности




ПОИСК





Смотрите так же термины и статьи:

Ароматичность

определение понятия



© 2024 chem21.info Реклама на сайте