Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эффекты локальные электрохимические

    Следовательно, зарождение трещин коррозии под механическим напряжением можно разделить на два этапа инкубационный, определяющийся временем до появления на поверхности материала локальных анодных участков (линий и полос скольжения), й коррозионный. Роль среды на инкубационном этапе сводится, как уже отмечалось, к адсорбционному (за счет эффекта Ребиндера) облегчению формирования анодных участков, а на коррозионном - к собственно их электрохимическому (коррозионному) растворению. [c.65]


    Гальванические эффекты. Опыт применения титановых сплавов в морских условиях показывает, что их следует использовать только в тех случаях, когда могут быть оправданы затраты, связанные с более высокой по сравнению со сталью и алюминием стоимостью. Морских конструкций, выполненных целиком из титановых сплавов, пока не существует, поэтому титан всегда соседствует в конструкциях с другими металлами. При наличии электрического контакта между титаном и каким-либо металлом происходит увеличение площади поверхности катода, связанного с локальными анодами на этом втором металле. Коррозия таких металлов, как сталь и алюминий, контролируется катодными процессами, поэтому возрастание площади катодной поверхности при образовании гальванической пары с титаном способствует усилению коррозии более анодного элемента пары. Как видно из приведенного электрохимического ряда напряжений, пассивный титан является более катодным металлом по отношению практически ко всем распространенным конструкционным материалам. [c.120]

    Вклад механического фактора активирования поверхности значительно меньший. По оценкам различных авторов нагружение металла с разной степенью деформации увеличивает скорость его растворения от десятков процентов до нескольких раз вследствие проявления механохимического эффекта [21]. Эти примеры показывают, что скорость локальной коррозии может достигать значительных величин сторонники электрохимической гипотезы считают это основой механизма коррозионно-механического разрушения металлов. [c.14]

    Зарубежные специалисты считают [45], что более 50 % коррозионных повреждений техники, эксплуатирующейся в природных условиях, связаны в той или иной степени с воздействием микроорганизмов. Стимулирование электрохимической коррозии происходит в результате появления концентрационных элементов на поверхности конструкций в результате накопления продуктов жизнедеятельности микроорганизмов, повышающих агрессивность среды. При этом происходят разрушение защитных пассивных пленок на металле и деполяризация катодного и (или) анодного процессов. Изменение ЭДС коррозионных элементов приводит к локализации процесса коррозии. Стимулированию локальной коррозии также способствует неравномерность распределения колоний микроорганизмов, образование сероводорода, сульфидов, ионов гидроксония, гидрат-ионов и т. п. в условиях, казалось бы, исключающих появление этих соединений. Постоянная изменчивость микроорганизмов, миграция катодных и анодных фаз, сочетания аэробных и анаэробных процессов приводят к появлению значительных коррозионных эффектов и создают предпосылки к возникновению отказов. Участие в процессе коррозии микроорганизмов снимает известные ограничения условий его протекания по [c.54]


    Мы полагаем, что тип скольжения, который в рассматриваемых сплавах может контролироваться посредством ЭДУ, является одной из важных характеристик, определяющих, каким образом никель и хром влияют на стойкость стали против водородного охрупчивания и КР (по крайней мере, в хлоридных средах). Были предложены и другие объяснения эффектов, связанных с содержанием никеля и хрома в аустенитных сталях. Согласно одной модели, например, никель влияет на электрохимические процессы у верщины трещины, изменяя скорость локальной катодной реакции [77]. Однако подобным представлениям трудно придать универсальную форму, которая объясняла бы и наблюдающиеся параллели между данными по КР и результатами испытаний в газообразном водороде. [c.68]

    Протекторная защита состоит в том, что к защищаемой конструкции присоединяют металл или сплав, электродный потенциал которого электроотрицательнее потенциала защищаемой конст- рукции в данной коррозионной среде. В морской воде или грунте материалом протекторов является чистый цинк или сплавы цинка с алюминием. Иногда применяют также сплавы на основе м агния. В таком гальваническом макроэлементе протектор служит анодом и в процессе защиты постепенно электрохимически растворяется. Коррозия защищаемой конструкции — катода полностью прекращается или значительно уменьщается. Несмотря на увеличение общего тока элемента, локальный коррозионный ток защищаемой конструкции (ток микропар) после присоединения к ней протектора значительно уменьщается. Эффективность катодной защиты характеризуют величиной защитного эффекта [c.83]

    Возможность возникновения мгновенных локальных концентрационных элементов следует также учитывать, и не следует забывать суммарный эффект, возникающий в связи с различием электрохимических характеристик отдельных фаз (в многофазном сплаве), подвергающихся воздействию. [c.689]

    Лабораторные исследования [84] показали, что для возникновения фреттинг-коррозии при трении стали о сталь требуется кислород, а не влага. Разрушение во влажном воздухе меньше, чем в сухом еще меньшие разрушения наблюдаются в атмосфере азота. С понижением температуры коррозия усиливалась. Таким образом, становится очевидным, что механизм фреттинг-коррозии не электрохимический. Разрушение увеличивается с возрастанием нагрузки вследствие интенсивного питтингообразования на контактирующих поверхностях, так как продукты коррозии, например а-РсаОз, занимают больший объем (в случае железа — в 2,2 раза), чем металл, из которого образуется данный оксид. Так как при колебательном скольжении оксиды не могут удаляться с поверхности, их накопление ведет к локальному увеличению напряжения, а это ускоряет разрушение металла в тех местах, где скапливаются оксиды. С увеличением скольжения фреттинг-коррозия также возрастает, особенно при отсутствии смазки на. трущихся поверхностях. Увеличение частоты при одном и том же числе циклов снижает разрушение, но в атмосфере азота этого эффекта не наблюдается. На рис. 7.19 представлены графики зависимости фреттинг-коррозии от разных факторов. Заметим, что скорость коррозии в начальный период испытаний больше, чем при установившемся режиме. [c.165]

    Электрохимические реакции, встречающиеся в производстве, оказываются, как правило, многостадийными. Поэтому дальнейшая разработка теории многостадийных процессов является одной из важнейших задач электрохимической кинетики. Наряду с этим необходимо указать на проблему интерпретации рх-эффектов в условиях, когда специфическая адсорбция ионов раствора приводит к ускорению электродных процессов (например, выделение водорода в присутствии специфически адсорбирующихся анионов, электровосстановле-иие анионов в присутствии специфически адсорбирующихся катионов и др.). Так как при этом существенную роль играют локальные значения гр1-потенциалов из-за электростатического взаимодействия между реагирующими ионами и ионами двойного слоя, то решение этой проблемы непосредственно связано с развитием теории двойного слоя при специфической адсорбции ионов. [c.390]

    Фреттинг-коррозия - это вид коррозионно-механического поражения соприкасающихся тел при малых колебательных перемещениях. Здесь решающая роль принадлежит механохимичеокии явлениям, вызывающим усиление коррозии (механохимический эффект) и снижение локальной прочности металла (хемомеханический эффект) [7]. Существенную роль при фреттинг-коррозии играет также электрохимический фактор, что обуславливается появлением в зоне трения окислов в высокодисперсноы состоянии. Частицы окислов способны адсорбировать своей поверхностью влагу и кислород, создавая тем самым электролитическую среду [8]. [c.5]

    Положительный дифференц-эффект первоначально был объяснен на основе представлений о локальных элементах, как о причине растворения. Предполагалось, что этот эффект связан с изменением сопротивления в общей системе локальный элемент — вспомогательный электрод [45, 54—56]. С позиций теории локальных элементов трактовался этот эффект и в других работах [57—60]. В работе [1] было показано, однако, что положительный дифференц-эффект является следствием действия законов электрохимической кинетики при растворении металлов. Выделение водорода на металле при прохождении через него анодного тока происходит в соответствии с теми же закономерностями, что и при катодной поляризации, то есть в соответствии с экспоненциальной зависимостью от потенциала. При анодной поляризации потенциал электрода смещается в положительном направлении, что и является причиной соответствующего снижения скорости вы-"Ч деления водорода, то есть причиной положительного диффе- ренц-эффекта. Аналогичная точка зрения была развита также в работе [61]. [c.17]


    Скорость любой химической реакции, зависящая от энергии активации и температуры, согласно известному уравнению Аррениуса, связана также с изменением энтальпии и энтропии исходных молекул при переходе их в состояние активного комплекса. Показана связь [34] между химическим и электрохимическим потенциалами системы и механическим воздействием на нее — локальным давлением. Последнее приводит к возрастанию химического электрохимического потенциала вещества и значительному росту механо-химической активности из-за локализации механо-химических эффектов в зоне фактического контакта трущихся поверхностей. Локальные давления в огромной Степени (в не меньшей, чем температура) влияют на поверхностные химические и электрохимические реакции и хемосорбцию. [c.108]

    Электрополирование труб. Электрохимический процесс полирования металлов представляет собой процесс анодного растворения, протекающий при значительной анодной поляризации. При оптимальном режиме и составе электролита металл находится на границе активного и пассивного состояний. Непосредственной причиной наступления локальной пассивности является образование окисных и гидроокисных пленок на поверхности анода в результате первичного электрохимического окисления металла. Эффект сглаживания поверхности достигается вследствие неодинаковой степени пассивирования выстзшов и впа-Дин. Углубления пассивируются в большей степени, чем выступы. Меньшая степень пассивирования выступов объясняется их повьшлен-ной химической активностью и более интенсивным растворением окисной пленки на них из-за большей скорости процессов диффузии, конвекции электролита и продуктов анодного растворения. Кроме того, окисные пленки на острых пиках менее прочны, так как они находятся в напряженном состоянии и могут даже разрываться. Это обстоятельство, а также повышенная напряженность поля вследствие [c.117]


Смотреть страницы где упоминается термин Эффекты локальные электрохимические: [c.241]    [c.234]    [c.149]    [c.189]    [c.545]    [c.56]    [c.17]    [c.28]    [c.269]    [c.149]    [c.269]   
Достижения науки о коррозии и технология защиты от нее. Коррозионное растрескивание металлов (1985) -- [ c.241 ]




ПОИСК





Смотрите так же термины и статьи:

Локальность



© 2025 chem21.info Реклама на сайте