Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аэрозоли седиментация

    Однако обычно в момент образования коллоидных растворов и аэрозолей седиментация ие играет существенной роли, являясь вторичным процессом. Этому обстоятельству благоприятствуют небольшие размеры первоначальных частиц и применяемое для ускорения процесса кристаллизации интенсивное перемешивание раствора. [c.101]

    Седиментация и коагуляция в значительной степени определяют свойства тропосферных аэрозолей. Седиментация определяет верхний предел размеров частиц, от коагуляции зависит величина нижнего предела и распределение по размерам частиц Айткена. Поэтому краткое рассмотрение этих процессов будет весьма уместным. [c.148]


    В свободнодисперсных системах частицы дисперсной фазы могут свободно перемещаться по всему объему дисперсионной среды. Это общее свойство позволяет оценивать некоторые происходящие в таких системах явления с общих позиций. В данном разделе рассматриваются в основном разбавленные системы, в которых движение частиц не осложнено их агрегацией. При этом условии для всех свободнодисперсных систем характерны общие закономерности седиментации, электрокинетических и молекулярно-кинетических свойств. Некоторые различия, не столько качественные, сколько количественные, имеют системы с жидкой и газообразной дисперсионными средами. Они в основном обусловлены меньшими вязкостью и плотностью газа по сравнению с жидкостью (для газа вязкость меньще в л 50 раз, а плотность в л 100 и более раз) и более сильным взаимодействием жидкости с дисперсной фазой (сольватация). Увеличение дисперсности и концентрации дисперсной фазы может приводить к существенным различиям в некоторых свойствах систем, что дает основание для их классификации по этим признакам. Свободнодисперсные системы делят на аэрозоли, порощки, лиозоли, суспензии, эмульсии и пены. [c.184]

    Важным отличием аэрозолей от жидких дисперсных систем является отсутствие электронейтральности в системе в целом. Суспензии, эмульсии, лиозоли в макроколичествах не имеют заряда, в них соблюдается закон электронейтральности. Аэрозоль даже в больших количествах может обладать значительным статическим зарядом, а седиментация приводит к его неравномерному распределению в системе, что создает серьезные трудности при рассмотрении Закономерностей изменения свойств аэрозолей. Однако оценочные расчеты, Иапример, напряженности электрического поля в облаках, можно провести с помощью простых соотнощений. [c.228]

    По ряду свойств аэрозоли подобны коллоидным растворам для них характерны термодинамическая неустойчивость, броуновское движение, диффузия, седиментация, эффект Тиндаля, избирательное светорассеяние, электрофорез и др. Но газовая дисперсионная среда вносит некоторые особенности светорассеяние в аэрозолях значительно сильнее, чем в коллоидных растворах броуновское движение и диффузия — более интенсивны электрический заряд дисперсных частиц аэрозолей ничтожно мал, а воздух [c.290]

    Данте определения следующим понятиям золь, эмульсия, гель, аэрозоль, броуновское движение, эффект Тиндаля, седиментация, коагуляция, синерезис, желатинирование, коллоидная устойчивость, коллоидная защита, коллоидная частица, аномальная вязкость, тиксотропия. [c.304]


    Если бы частица аэрозоля не находилась в броуновском движении, то время ее оседания т на расстояние А было строго постоянным. Однако из-за броуновского движения к ее перемещению добавляется вертикальная составляющая. Время, необходимое для прохождения частицей расстояния к, может быть больше (если броуновское смещение за время падения направлено снизу вверх) или меньше (если броуновское смещение направлено вниз) времени седимента ции. Полученное при таких измерениях большое число значений п, Та, Та. .. для продолжительности падения на одно и то же расстояние А можно обработать с помощью теории броуновского движения. Не входя в подробности этих расчетов, укажем, что коэффициент диффузии, вычисленный по полученным таким образом результатам с учетом поправки на седиментацию, для капелек масляного тумана, как показал Флетчер, прекрасно совпадает с коэффициентом диффузии, найденным для этой системы другими способами. [c.344]

    Весьма существенно учитывать одновременно идущие диффузию и седиментацию при исследовании поведения аэрозоля, заключенного в небольшое пространство. Это особенно важно для понимания процесса фильтрации. [c.344]

    Если частицы малы, то диффузия происходит быстрее, чем седиментация, и разрушение аэрозоля в основном будет вызвано прилипанием частиц к стенкам, а не оседанием на дно. Если" частицы крупные, наблюдается обратное явление, т. е. разрушение аэрозолей обусловлено в основном седиментацией. [c.344]

    Заряд частиц обусловливает явления, происходящие в больших объемах аэрозоля, например в облаках. Опытным путем установлено, что заряд капелек, воды в облаках в общем близок к величине, соответствующей потенциалу порядка 250 мВ. В больших объемах атмосферного аэрозОля происходит разделение частиц по размеру, а следовательно, и по электрическому заряду, вследствие того,, что частицы различных радиусов седиментируют с разной скоростью. В результате этого электронейтральность облака нарушается и в нем возникают мощные электрические поля. При этом нижняя часть облака приобретает обычно отрицательный заряд, а верхняя часть остается положительно заряженной. Расчеты показывают, что в таких условиях напряженность поля Я в облаке составляет в среднем 100 В/см. Однако при значительной полидисперсности капелек облака а также при конвекционных токах, обусловленных ветром, в облаке могут воз никать и гораздо большие напряжения, служащие причиной грозовых явлений Заряд частиц аэрозолей обычно определяют с помощью приемов, аналогич ных методам, используемым для изучения броуновского движения в этих систе мах. С большой точностью измеряют скорость свободной седиментации частицы, аэрозоля. После этого определяют скорость падения или поднятия частицы в наложенном на нее электрическом поле и вычисляют заряд частицы Q, пользуясь, уравнением  [c.347]

    Характер течения аэрозоля в волокнистом фильтре очень сложен, поскольку поток, огибая отдельные, беспорядочно расположенные волокна, все время изменяет свое направление. Действие волокнистых фильтров сводится к инерционному осаждению, прилипанию движущейся частицы к какому-нибудь выступу на поверхности волокна (эффект зацепления), седиментации и, наконец, к диффузии, частицы к поверхности волокна с последующей фиксацией. Различные факторы действуют неодинаково на разные явления, на которых основано выделение дисперсной фазы при фильтрации аэрозоля. Инерционное осаждение и седиментация увеличиваются при возрастании размера и плотности частиц, а также скорости течения, диффузионному осаждению способствует уменьшение размера частиц, но оно не зависит от плотности частиц. [c.361]

    Особенности аэрозолей заключаются в том, что из-за низкой вязкости воздуха седиментация и диффузия частиц аэрозоля протекают очень быстро. Кроме того, дымы и туманы легко переносятся ветром, что используют для создания дымовых завес, окуривания и опрыскивания сельскохозяйственных культур. Электрические свойства аэрозолей чрезвычайно сильно отличаются от электрических свойств систем с жидкой средой, что объясняется резким различием плотностей и диэлектрических свойств газов и жидкостей. В газовой среде отсутствуют электролитическая диссоциация и ДЭС. Однако частицы в аэрозолях имеют электрические заряды, которые возникают при случайных столкновениях частиц друг с другом или с какой-нибудь поверхностью. Возможна также адсорбция ионов, образующихся при ионизации газов под действием космических, ультрафиолетовых и радиоактивных излучений. Для аэрозолей характерна крайняя агрегативная неустойчивость. Их длительное существование связано с высокой дисперсностью и малой концентрацией. Это значит, что устойчивость аэрозолей является лишь кинетической, термодинамические факторы устойчивости отсутствуют. [c.447]

    Если дисперсионной средой является жидкость или газ, то частицы дисперсной фазы могут перемещаться относительно среды. В то же время плотности фаз, образующих дисперсную систему, как правило, не совпадают. Это очевидно, если одной из фаз является газ (туманы, аэрозоли, пены). Достаточно существенно отличаются плотности составляющих фаз в эмульсиях и суспензиях. Под действием силы тяжести должно происходить направленное перемещение менее плотной фазы вверх (всплывание), а более плотной— вниз (оседание или седиментация). Капли тумана или частицы аэрозоля стремятся под действием силы тяжести осесть, пузырьки газа в пенах — всплыть над дисперсной фазой и уйти в находящийся над ней свободный от жидкости объем. Эмульсии имеют тенденцию к разделению на два слоя — верхний, образованный жидкостью с меньшей плотностью, и нижний, содержащий жидкость с большей плотностью. Твердые частицы, образующие суспензию, оседают на дно, если их плотность выше, чем плотность жидкости, образующей дисперсионную среду, или всплывают — в противоположном случае. Способность дисперсных систем противостоять такому механическому расслаиванию называют кинетической устойчивостью дисперсных систем. [c.320]


    СкороСть самопроизвольной седиментации аэрозоля очень сильно зависит от размеров взвешенных частиц. Так, при их диаметре в 1 мм. она измеряется метрами, а при диаметре в 10 долями микрона эа секунду. Коагуляция аэрозолей идет гораздо быстрее, чем гидрозолей (и тем быстрее, чем меньше размеры взвешенных частиц). [c.619]

    Седиментация. Частицы веществ, находящихся во взвешенном состоянии в газообразной или жидкой среде, испытывают воздействие двух противоположно направленных сил. Это — силы тяжести, которые стремятся сконцентрировать частицы в нижних слоях, и силы диффузии, перемещающие дисперсную фазу аэрозолей, коллоидных растворов из больших концентраций в меньшие. [c.147]

    Аэрозоли охватывают большой диапазон дисперсности, однако высоко- и грубодисперсные аэрозоли неустойчивы, первые — вследствие частых столкновений частиц между собой и в замкнутой системе со стенками, вторые — в связи с большой скоростью седиментации (малая среды). Поэтому практически аэрозоли [c.296]

    Аэрозоли охватывают большой диапазон дисперсности, однако высоко- и грубодисперсные аэрозоли неустойчивы, первые — вследствие частых столкновений частиц между собой и (в замкнутой системе) со стенками, вторые — в связи с большой скоростью седиментации (малая 1 среды). Поэтому практически аэрозоля занимают область 10-2 10-5 видно из приводимых ниже данных  [c.289]

    Поскольку аэрозоли являются агрегативно неустойчивыми системами, их разрушение всецело связано с кинетической устойчивостью (см. раздел ХП1. I). В связи с проблемами газоочистки понятие кинетической устойчивости (сформировавшейся при рассмотрении спонтанного процесса разрушения коллоидов) нуждается в обобщении применительно к рассмотрению процессов принудительного разрушения. Кинетическая устойчивость сводится к седиментационной лишь тогда, когда дисперсные частицы от дисперсионной среды отделяются в процессе седиментации, т. е. в случае грубодисперсных систем. В противоположном предельном случае высокодисперсных аэрозолей частичная концентрация падает за счет броуновской диффузии частиц к поверхности коллектора. Именно этот спонтанный процесс контролирует кинетическую устойчивость в высокодисперсных системах. [c.352]

    Газовая дисперсионная среда вносит ряд своеобразных черт в свойства аэрозолей. Прежде всего — это их принципиальная лио-фобность и отсутствие эффективных путей стабилизации. Время разрушения аэрозольной системы определяется только скоростью седиментации или коагуляции. Иначе говоря, устойчивость аэрозолей, во всяком случае аэрозолей с заметной концентрацией дисперсной фазы, носит кинетический характер. [c.271]

    Большинство методов разрушения аэрозолей связано с интенсификацией процессов коагуляции, коалесценции и прилипания частиц аэрозолей к поверхностям (твердым стенкам фильтров, к каплям жидкости при искусственном дождевании), а также процессов седиментации (путем изменения скорости и направления потока аэрозоля при инерционном осаждении). [c.275]

    В замкнутом объеме, например в поре диаметром й, разрушение аэрозоля может происходить вследствие седиментации (более крупных) и диффузии (мелких) частиц к стенкам поры и последующего оседания на них. Время разрушения аэрозолей в результате седиментации составляет ссд /у v= — скорость движения частицы [c.275]

    В замкнутом объеме, например в поре диаметром (I, разрушение аэрозоля может происходить вследствие седиментации (более крупных) и диффузии (мелких) частиц к стенкам поры и последующей адгезии на них. Время разрушения аэрозолей в результате [c.335]

    Заряд частиц аэрозолей обычно определяют с помощью приемов, аналогичных методам, используемым для изучения броуновского движения в этих системах. С большой точностью измеряют скорость свободной седиментации частицы аэрозоля. После этого определяют скорость падения или поднятия частицы в наложенном на нее электрическом поле и вычисляют заряд частицы Q, пользуясь, уравнением  [c.347]

    Возмои ен целый ряд процессов, ведущих к очистке тропосферы от взвешенных в ней мелких частиц радиоактивных аэрозолей, седиментация которых могла бы длиться многие годы. Результаты наблюдений показали, что, действительно, продукты ядерных взрывов, внесенные в тропосферу, сравнительно быстро удаляются из нее. [c.166]

    Из свободнодисперсных систем наиболее широко распространены микрогетерогенные системы, такие как суспензии, пороижи, эмульсии, аэрозоли. Характерным общим свойством этих систем, особенно если они разбавлены, является склонность к оседанию или всплыванию частиц дисперсной фазы. Оседание частиц дисперсной фазы называется седиментацией, а всплывание частиц — [c.187]

    Особую роль играет дисперсность частиц при их седиментации в аэрозолях. При применении закона Стокса к аэрозолям основное значение приобретает требование сплопиюсти среды, при нарушении которой законы гидродинамики неприменимы. В аэрозолях среду мол-сно считать сплоии10й, если размер частиц значительно превышает средний свободный пробег молекул газа. При этом условии частица взаимодействует сО множеством молекул среды. При нормальных условиях для воздуха длина свободного пробега молекул составляет около 0,1 мкм. Закон Стокса Ргр г) в этом случае удовлетворительно описывает движение частиц с радиусом более 5 мкм. Если же длина свободного пробега молекул значительно больше размера частицы, последняя будет находиться в тех же условиях, что и отдельные молекулы газа. Среда по отношению к частице оказывается дискретной, и на движение частицы распространяются законы молекулярно-кинетической теории, которая [c.193]

    Отличительная особенность броуновского движения частиц в газообразной дисперсионной среде определяется, прежде всего, малой вязкостью и плотностью газов. В связи с этим жидкие и твердые частицы аэрозолей имеют болыиие скорости седиментации под влиянием силы тяжести, что затрудняет наблюдение броуновского движения. Одиако действие силы тяжести частиц удобно скомпенсировать с помощью электрического поля. Другая особенность броуновского движения частиц в газах связана с тем, что число молекул в единице объема газа значительно меньше, чем в жидкости, и число столкновений молекул газа с коллоидной частицей также меньи.[е, а это обусловливает существенно большие амплитуды броуновского двпжения. Средний сдвиг частицы, находящейся в воздухе при нормальных условиях, в 8 раз больше, а в водороде в 15 раз больше, чем в воде. При уменьшении давления газа средний сдвиг частицы можно увеличить в сотни раз. Из сказанного следует, что, изменяя давление, можно менять характер броуновского движения, т. е. управлять им. Поэтому аэрозоли являются хорошими объектами для исследования броуновского движения. [c.207]

    В микрогетерогеиных системах (суспензиях, эмульсиях, газовых эмульсиях, аэрозолях), частицы которых благодаря больщой массе не могут принимать участия в тепловом (броуновском) движении, происходит седиментация — осаждение или обратный процесс — всплывание частиц. Если движение потока частиц ламинарное и может быть описано уравнением Стокса, то скорость оседания (всплывания) в гравитационном поле и связана с их размером следующим соотношением  [c.75]

    Отличие аэрозолей от лиозолей обусловлено прежде всего разреженностью и меньшей вязкостью дисперсионной газовой среды. Поэтому броуновское движение в аэрозолях происходит гораздо более интенсивно, а седиментация частиц идет значительно быстрее, чем в лиозолях. Другое существенное отличие аэрозолей от лиозолей заключается в том, что в газовой среде не может происходить электролитическая диссоциация и, следовательно, невозможно образование двойного электрического слоя из ионов вокруг частиц. В связи с этими особенностями уч ние об аэрозолях развивалось в значительной мере самостоятельно, своими собственными путями. [c.340]

    Рассмотрим кратко особенности броуновского движения в дисперсных системах с газовой средой. На броуновском движении частиц в аэрозолях весьма сильно сказывается седиментация вследствие малой вязкости и малой плотности газовой среды. В ранних исследованиях это не было учтено, и поэтому значения средних смещений в горизонтальном и вертикальном направлениях не совпадали. Кроме того, благодаря малой,вязкости аэрозолей в них легко возникают конвекционные токи, что также весьма затрудняло изучение броуновского движения в этих системах. Однако позже благодаря применению усовершенствованных методов исследования все эти трудности были преодолены и было установлено,, что броуновское движение в аэрозолях подчиняется тем же закономерностям,, что и в лиозолях. В настоящее время броуновское движение в аэрозолях изучают путем микроскопического наблюдения за седнментйрующими частицами,, которым придают тем или иным способом электрический заряд. Благодаря заряду частицы, опустившиеся на некоторое расстояние вследствие седиментации можно возвратить в исходное положение при наложении соответственно направленного электрического поля и таким образом проводить множество изме- [c.343]

    Рассматривая влияние влажности на коагуляцию дымов, необходимо упомянуть о наблюдениях Далавала и Орра. Эти исследователи нашли, что скорость седиментации аэрозолей MgO и, особенно, NH4 I, значительно повышается во влажной атмосфере. Микроскопическое исследование показало, что агрегаты частиц становятся при этом более компактными. По всей вероятности это вызвано стягиванием агрегатов конденсированной водной пленкой. [c.348]

    Определение дисперсного состава суспензий, порошков, аэрозолей и других микрогетерогенных систем основано на разнообразных седиментометрических методах дисперсионного анализа. К ним относят отмучивание — разделение суспензии на фракции путем многократного отстаивания и сливания измерение плотности столба суспензии, изменяющейся вследствие седиментации частиц суспензии пофракционное (дробное) оседание метод отбора массовых проб — один из наиболее достоверных накопление осадка на чашечке весов электрофотоседиментометрия, основанная на изменении интенсивности пучка света, проходящего через столб суспензии, о чем судят по измерениям оптической плотности седиментометрия в поле центробежных сил, основанная на применении центрифуг. В целом методы седиментометрии охватывают диапазон дисперсности от 10" до 10 м, включающий коллоидные, микрогетерогенные и некоторые грубодисперсные системы. Однако каждый из методов ограничен более узкими пределами дисперсности частиц. [c.376]

    В прошлом был сделан ряд попыток классификации аэрозолей на основе их природы, происхождения и величины частиц Эти попытки оказались не вполне успешными из-за неопределенного характера многих аэрозолей и различия между научными и принятыми в обыденной жизни обозначениями различных типов аэро-яолей Мы решили ограничиться в этой книге системами, содержащими лишь медленно оседающие частицы, а именно со скоростью седиментации не больше чем у капелек воды диаметром 100 мк и попытались классифицировать аэрозоли отчасти по их природе, отчасти по способу образования дисперсной фазы На первый взгляд может показаться, что, разделив аэрозоли на три больших класса — пыли, дымы и туманы, можно охватить все случаи однако при более внимательном рассмотрении оказывается, что многие аэродисперсные системы можно с одинаковым правом отнести h двум классам, а некоторые системы не принадлежат ни к одному из этих классов Несмотря на существование таких исключений, указанную классификацию целесообразно сохранить [c.10]

    Указанные авторы считали аэрозоли аналогами систем с жидкой средой — гидрозолей, однако вскоре стало ясно, что эти два класса дисперсных систем существенно различны вследствие присущей аэрозолям неустойчивосГи К сожалению, термин аэрозоль в последние годы начали применять к системам, для которых он никогда не предназначался, и стали называть аэрозолями любые аэросуспензии В этой книге термин аэрозоль употребляется лишь в его первоначальном смысле т е в применении к системам с достаточно мелкими частицами и обладающим поэтому некоторой степенью устойчивости, по крайней мере по отношению к седиментации К этой категории принадлежат пылн с мелкими частицами, дымы и некоторые туманы Кроме того принято считать, что аэрозоли могут быть легко обнаружены по рассеянию ими видимого света Поэтому вряд ли можно причислить к настоящим аэрозолям ионные облака  [c.12]


Смотреть страницы где упоминается термин Аэрозоли седиментация: [c.189]    [c.319]    [c.388]    [c.197]    [c.335]   
Курс коллоидной химии (1976) -- [ c.344 ]




ПОИСК





Смотрите так же термины и статьи:

Аэрозоль

Седиментация

Седиментация седиментации



© 2025 chem21.info Реклама на сайте