Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коллоиды разрушение

    При введении в коллоидный раствор электролитов происходит сжатие диффузного слоя и даже его разрушение, в результате чего силы отталкивания между частицами уменьшаются, частицы слипаются и выпадают в осадок — происходит коагуляция коллоидного раствора. Чем выше заряд противоиона во введенном электролите, тем при меньшей концентрации наблюдается эффект коагуляции (правило Шульце — Гарди). Гидрофильные коллоиды коагулируют только при значительных концентрациях электролита. Коагуляции коллоидов способствует также повышение температуры раствора. Таким образом, для разрушения коллоидного раствора и его коагуляции необходимо нагревание и введение электролита. [c.99]


    Для коагуляции гидрофильных коллоидов требуется большее количество электролита, чем для гидрофобных. Процесс коагулирования гидрофильных коллоидов называют высаливанием (например, высаливание мыла из водного щелочного раствора). Основную роль в этом процессе играет разрушение гид-ратной оболочки частиц, в то время как роль заряда частиц становится второстепенной. На рис. 36 показана схема коагуляции гидрофильного и гидрофобного золей. [c.90]

    Находит применение другой метод полимеризации в водной среде, который называют суспензионным. В этом случае частицы мономера в воде диспергированы более грубо вследствие того, что не применяются такие активные эмульгаторы, как мыла. Диспергируют с помощью гидрофильных коллоидов (поливинилового спирта, желатина), интенсивно перемешивая. Мономер, распределенный в воде в виде относительно крупных капель, содержит инициатор полимеризации, растворимый в мономере и нерастворимый в воде. Капля представляет собой как бы мелкий блок, в котором происходит полимеризация. Полимер, образующийся в виде более крупных частиц, чем при эмульсионной полимеризации, легко отделяется от воды (отстаиванием, центрифугированием). Поэтому отпадает необходимость вводить электролиты для разрушения эмульсии. Полимеры, получаемые таким способом, менее загрязнены веществами, ухудшающими диэлектрические свойства, и более пригодны для электроизоляционных целей, чем получаемые водноэмульсионным методом. [c.44]

    При обеззараживании хлором происходит разрушение органических примесей воды, например гуминовые вещества минерализуются до СО2, железо (II) окисляется до железа (III), Мп (II) до Мп (IV), устойчивые суспензии превращаются в неустойчивые из-за разрущения защитных коллоидов. Иногда хлорирование приводит к образованию сильно пахнущих хлорпроизводных продуктов распада растительных и животных организмов. Особенно устойчивыми и неприятными являются запахи, возникающие при хлорировании воды, загрязненной стоками, содержащими фенолы и другие ароматические соединения. Привкусы и запахи появляются при содержании в воде фенолов уже при разведении 1 10 000 000. Со временем они усиливаются и не исчезают при нагревании. Иногда прибегают к хлорированию большими дозами, разрушающими ароматические соединения. [c.152]

    В этом случае сначала необходимо разрушить коллоид разрушенный коллоид осаждают центрифугированием, осадок декантируют. [c.117]

    Этот вопрос требует дальнейшего изучения, так как в ряде случаев исследователи наблюдали, что ири разрушении эмульсий остаются как раз мелкие каили [А. В. Бромберг, Коллоид, ж., 8, 117 (1946)]. Прим, редактора перевода.) [c.77]


    Коллоидные системы, характеризующиеся слабым взаимодействием дисперсной фазы и дисперсионной среды (лиофобные коллоиды), отличаются принципиальной неустойчивостью и склонностью к уменьшению дисперсности со временем. Скорость процесса укрупнения частиц колеблется в очень широких пределах. Известны, например, золи золота, сохраняющиеся без видимых изменений десятки лет, и такие же золи, разрушающиеся в течение нескольких секунд при введении определенных веществ. Между термодинамической неравновесностью золей и скоростью их разрушения нет определенной зависимости. Характер временных изменений в системе можно установить только, изучая механизм укрупнения частиц в золях. [c.104]

    Поскольку аэрозоли являются агрегативно неустойчивыми системами, их разрушение всецело связано с кинетической устойчивостью (см. раздел ХП1. I). В связи с проблемами газоочистки понятие кинетической устойчивости (сформировавшейся при рассмотрении спонтанного процесса разрушения коллоидов) нуждается в обобщении применительно к рассмотрению процессов принудительного разрушения. Кинетическая устойчивость сводится к седиментационной лишь тогда, когда дисперсные частицы от дисперсионной среды отделяются в процессе седиментации, т. е. в случае грубодисперсных систем. В противоположном предельном случае высокодисперсных аэрозолей частичная концентрация падает за счет броуновской диффузии частиц к поверхности коллектора. Именно этот спонтанный процесс контролирует кинетическую устойчивость в высокодисперсных системах. [c.352]

    Внутренняя, коллоидальная влажность характеризуется чрезвычайно равномерным распределением в топливной массе (как в горючей, так и в минеральной части топлива). Различают влагу набухания и адсорбционную влагу. Первая при увлажнении коллоидальной системы приводит к ее набуханию (увеличению объема без нарушения равномерности распределения), а при удалении — к усадке вещества. В силикатном деле такая влага носит название усадочной Под влагой набу хания понимают то количество влаги, которое воспринимает в себя коллоидальная система, помещенная в воду. Некоторые коллоиды (например, крахмал) обладают неограниченной способностью к набуханию. Способность эта может резко уменьшиться при старении (разрушении) коллоида, что может быть достигнуто искусственными средствами (термической обработкой, воздействием химических присадок). [c.40]

    Еще более эффективна ультразвуковая обработка. Диспергирующее действие ультразвука основано на мгновенных, носящих ударный характер, перепадах давления порядка тысяч атмосфер в возникающих кавитационных пузырьках. Кроме того, ультразвуковые волны, пронизывающие частицы, вызывают весьма большие разрушающие ускорения. В. В. Симу ров указывает, что помимо разрушения глинистых агрегатов, при ультразвуковой обработке могут происходить разрывы валентных связей решетки алюмосиликатов со слоистой и ленточной структурой. Свежеобразованные поверхности, как показал Г. С. Ходаков, приобретают высокую активность, позволяющую даже осуществлять химические реакции, необычные в нормальных условиях. В результате усиливаются структурообразование и кинетическая устойчивость системы. Ультразвуковая обработка может применяться также как метод улучшения структуры насыщенных солью буровых растворов, подвергшихся при введении защитных коллоидов стабилизационному разжижению. Чрезмерное диспергирование может, однако, привести к снижению качества бурового раствора вследствие дальнейшего углубления коагуляционного процесса и деструкции высокомолекулярных защитных реагентов. [c.81]

    При возникновении некоторых осложнений глинистые коллоиды иногда дополняют и даже полностью заменяют органическими коллоидами. Например, если глины флокулируют под действием растворимых солей, в результате чего становится невозможным регулирование реологических и фильтрационных свойств раствора, в соленую воду или загрязненный солями буровой раствор добавляют солестойкие коллоиды (такие, как предварительно желатинизированный крахмал или целлюлозные полимеры). Целлюлозные и полиакриловые полимеры, а также полимеры из природных смол применяются в растворах с низким содержанием твердой фазы, чтобы облегчить поддержание устойчивости ствола скважины и свести к минимуму диспергирование выбуренной породы буровым раствором. Полимеры состоят из длинных цепочек повторяющихся групп, которые адсорбируются на поверхностях частиц шлама, защищая их от. разрушения. Эти полимеры обладают вязкостными свойствами главным образом благодаря механическому взаимодействию между цепями, при котором не происходит структурообразования (за исключением полимеров, между цепочками которых образуются поперечные связи в результате химического воздействия). [c.19]

    Проницаемость фильтрационной корки зависит от гранулометрического состава твердой фазы раствора, а также от электрохимических условий. Обычно чем больше в растворе частиц коллоидного размера, тем меньше проницаемость корки. Присутствие в глинистых растворах растворимых солей резко повышает проницаемость фильтрационной корки, но некоторые органические коллоиды позволяют добиться низких проницаемостей корки даже в присутствии насыщенных солевых растворов. Понизители вязкости обычно снижают проницаемость корки, так как они вызывают разрушение глинистых комочков на мельчайшие частицы. [c.26]


    Скорость разрушения полимера существенно зависит от способа его получения. Полимер в коллоидном растворе или в виде осадка полимерной гидроокиси, образованный при длительном интенсивном нагревании или выстаивании слабокислого раствора плутония (IV), разрушается с гораздо меньшей скоростью, чем только что приготовленный без нагревания коллоид. Таким образом, деполимеризация происходит тем быстрее, чем ниже степень полимеризации. В табл. 6 представлены скорости деполимеризации полимеров, полученных различным путем. Добавление комплексующих анионов (501, Р ) сокращает время деполимеризации. [c.34]

    При осаждении сульфата бария в присутствии коллоидных органических веществ (что имеет место при анализе почв) рекомендуется предварительное соосаждение органического коллоида на гидроокиси железа [881]. Встряхивание с активированным углем не удаляет коллоиды из раствора, а разрушение его окисляющими агентами может привести к частичному переводу в сульфат органической серы ионообменный метод в данном случае не эффективен. [c.31]

    Протеины стабильны лишь в сухом состоянии. В этом случае состав их меняется едва заметно и то лишь по истечении длительного времени (так например казеин, пролежавший годы, образует мутные растворы в щелочах, в то время как свежий он дает прозрачные слегка опалесцирующие растворы). Необходимым условием для изменений в белковых веществах является присутствие воды. Протеины гидрофильны, они — гидрофильные коллоиды. В водной среде они теряют свою стабильность, переходят в состояние лабильное, в состояние легкой изменяемости в сторону образования продуктов распада. В этих процессах распада принимает участие вода, она реагирует с протеином, вступает с ним в соединение с разрушением молекулы протеина. Такой процесс называется гидролизом. [c.8]

    С другой стороны, этот недостаток метода—неполнота разрушения— является и полезным. Неразрушенные вещества, представляя собой коллоиды, при пропускании сероводорода им оса-, ждаются, увлекая за собой следы сернистых металлов, образующих при малых концентрациях также коллоидальные растворы, или суспензии, чрезвычайно долго не осаждающиеся. [c.104]

    Химическая реакция с образованием вещества, которое нас интересует, и возрастанием его концентрации до значений, больших концентрации насыщения. Варианты этого способа обменные реакции с осаждением ( 3.4), реакции с разложением, разрушение коллоидов под влиянием кислотности — щелочности среды н температуры. [c.71]

    Иммобилизованная вода 1 , которая удерживается в торфе чисто механическими силами и не обладает поэтому сколько-нибудь заметной энергией связи. К этой категории относится внутриклеточная вода (биологически иммобилизованная) — внк, вода, иммобилизованная внутри рыхлых структур частиц гидрофильных коллоидов и сетчатых гелеобразных структур — а также неподвижная вода замкнутых и тупиковых пор — стр- Механическое воздействие (диспергирование, сжатие) или сдвиг динамического дисперсионного равновесия при изменении внешних условий, а также разрушение структуры образцов могут приводить к переходу этой воды в свободную. Вода трех последних категорий по своим свойствам не отличается от свободной воды. [c.393]

    Щукин Е. Д., Ребиндер П. А. Образование новых поверхностей при деформировании и разрушении твердого тела в поверхностно-активной среде.— Коллоид, журн., 1958, 20, № 5, с. 645—654. [c.45]

    Коллоидные растворы играют большую роль в процессах жизнедеятельности организмов. Коллоиды приобрели важное значение в технологии. Процессы образования и разрушения коллоидных систем, их физико-химические свойства изучаются специальной областью химической науки — коллоидной химией. [c.33]

    Однако объяснять причину старения лсивого организма только старением его коллоидов нельзя. Как известно, в организме происходит непрерывный обмен веществ, процесс ассимиляции и диссимиляции, разрушение органической субстанции и образование ее, И хотя протоплазма всех организмов на.ходится в коллоидном состоянии, причины старения их кроются не в физико-химических, а более сложных, биологических, процессах. В самом деле, в любом растворе того или иного коллоида не наблюдается специфического, присущего именно живым организмам обмена веществ и энергии, явлений ассимиляции и диссимиляции. Если у коллоидов прото- [c.398]

    Под действием электрического поля происходит движение не только коллоидных частиц в сторону одного из электродов противоположно заряженные ионы, содержащиеся в растворе и концентрировавшиеся в нем вокруг частиц коллоида, тоже приходят в движение в противоположном направлении — в сторону другого электрода. Таким образом, происходит как бы разрушение мицеллы, и центральная часть ее — частица — движется в одну сторону, а окружающие ее ионы — в другую. Однако частица все же не остается без эквивалентного ионного окружения, так как движение ее по раствору обычно происходит настолько медленно, что это ионное окружение ионная атмосфера) постоянно успевает воссоздаваться из содержащихся в растворе ионов. [c.524]

    Под действием электрического поля происходит движение не только коллоидных частиц в сторону одного из электродов про-тивоположно заряженные ионы, содержащиеся в растворе и концентрировавшиеся в нем вокруг частиц коллоида, тоже приходят в движение в противоположном направлении — в сторону другого электрода. Таким, образом, происходит как бы разрушение ми- [c.532]

    Для разрушения нефтяных эмульсий используются механические (отстаивание), термические (нагревание), химические и электрические методы. При химическом методе обезвоживания нагретую нефтяную эмульсию обрабатывают деэмульгаторами. В качестве последних используются различные неиногенные ПАВ типа заш итных коллоидов оксиэтилированные жирные кислоты, метил- и карбоксиметилцеллюлоза, лигносульфоно-вые кислоты и др. Наиболее эффективное удаление солей и воды достигается при электротермохимическом методе обессоливания, в котором сочетаются термохимическое отстаивание и разрушение эмульсии в электрическом поле. [c.125]

    Деэмулъгаторы-коллоиды — это ПАВ, которые в эмульсии разрушают защитную оболочку капли и могут преобразовывать исходную эмульсию "вода в нефти в эмульсию "нефть в воде". Для разрушения эмульсий типа "вода в нефти" применяют деэмульгаторы двух типов — ионогенные и неионогенные. [c.42]

    Вводя в коллоидные системы электролиты, можно коллоид либо перевести в гелеобразное состояние, либо скоагулировать. Гелеобразование имеет место при введении весьма малых дозировок электролитов-коагуляторов, обеспечиваьэщих возникновение небольшого количества коагуляционных центров на особых точках поверхности частиц концах, углах, ребрах и отдельных неровностях, по которым и происходит сцепление частиц. При введении значительных количеств тех же электролитовч<оагуля-торов всегда возникают отдельные агрегаты хлопьев, которые, достигнув достаточных размеров, образуют компактный осадок — коагель с видимым разрушением — расслоением системы. В этом случае на поверхности частиц дисперсной фазы образуется много коагуляционных центров, и сцепление между частицами в коагулятах происходит практически по всей поверхности частиц.  [c.230]

    Из теории флокуляции следует, что интенсивность смешения должна зависеть от ММ и дозы флокулянта, а также от содержания в воде взвешенных веществ и органических коллоидов. Экспериментальные наблюдения над смешением катионных флокулянтов с водой подтвердили эти положения. Установлено [14], что Для фло-лулянта с ММ=3 10Р требуется интенсивное смешение, которое приводит к более полному последующему осаждению хлопьев и уменьшению мутности отстоенной воды. Флокулянт с меньшей ММ=Ъ-Ш давал при этой интенсивности смешения плохо оседавшие хлопья, по-видимому, вследствие их частичного разрушения. [c.113]

    Магнитоактиваторы производства Сибирского химического комбината [195] устанавливаются в скважины (рис. 2.15), на трубопроводы или на байпасные линии с помощью фланцевых соединений (рис. 2.16) для уменьшения коррозии труб, предотвращения образования АСПО и солеотложений, разрушения эмульсий и коллоидов. [c.52]

    Иногда, если разрушение препарата зашло не слишком далеко, такие неполноценные золи колларгола удается исправить добавлением нескольких капель 0,1 н. раствора едкого натра,. регенерируюш его заш итную часть коллоида. Дозировка ш елочи в этом случае не должна превышать 10 капель 0,1 н. раствора едкого натра на 100 мл колларголового золя. Для получения максимального эффекта щелочь целесообразно использовать в самом начале работы для смачивания колларгола до прибавления воды. Растворы колларгола, исправленные подщелачивани-ем, не следует применять для инъекций. [c.191]

    Поиски основаны на литохимическом опробовании русловых отложений (старое укоренившееся название — донное опробование). Литохимические пробы имеют тесную генетическую и пространственную связь с вторичными ореолами рассеяния, так как в процессе разрушения первичных ореолов и рудных тел месторождений всегда вначале формируются вторичные ореолы, а затем уж потоки рассеяния. В потоках рассеяния происходит механическая дезинтеграция материала первичных ореолов и руд. Миграция элементов осуществляется в форме водорастворимых солей, сорбирующихся на частицах коллоидов, глин, песков, илов. В этой связи в потоках рассеяния происходит еще более дальняя миграция элементов, чем во вторичных ореолах. Создаются своеобразные ореолы рассеяния элементов, превышающие по площади вторичные ореолы. Этим обусловлено широкое применение метода на ранних стадиях ведения ГРР масштаба 1 200000—1 50000. Именно на основе оценки территории по данным опробования потоков рассеяния. . выделяются перспективные участки для постановки опробования вторичных ореолов,, по которым выходят на коренной источник месторождений путем проходки поверхностных горных выработок. [c.454]

    При центрифугировании под действием центробежнь Х сил (фактор разделения не менее 7250) происходит разрушение коллоид юго раствора и частицы, имеющие мень 1 ую плотность (масло), отделяются от водной фазы. Для облегчения этого процесса следует удалить гид-ратную оболочку с поверхности мицелл, что делают путем добавок к эмульсии, например кислоты. Содержание последней должно обеспечивать pH среды, равный 1-2, что требует использования центрифуги в кислотостойком испол ении. [c.254]

    В рамках теории устойчивости коллоидов (ДЛФО) коагуляция может происходить с преодолением потенциального барьера отталкивания частиц, а может происходить и без его преодоления при наличии достаточно глубокой потенциальной ямы на дальних расстояниях между частицами. В первом случае возникает непосредственный (фазовый) контакт частиц. Частицы могут при этом спекаться за счет перекристаллизации дисперсной фазы в зоне контакта. Структуры с таким видом связи называются кристаллизационными. Процесс структурирования, как и коагуляция, имеет в этом случае необратимый характер. Дисперсные системы с кристаллизационной структурой обладают свойствами хрупкого твердого тела. Во втором случае (безбарьерной коагуляции) связь частиц значительно слабее и она вполне обратима, т. е. легко разрушается и снова восстанавливается, Соответственно этому и состояние системы способно обратимо изменяться. Разрушение связей между частицами, а следовательно, и разрушение структуры, может быть вызвано слабыми механическими воздействиями, например перемешиванием раствора, переливанием его в другой сосуд и т. д. В состоянии покоя разрушенные связи, а с ними и структурное состояние системы полностью восстанавливаются. Количество циклов разрушения и восстановления структуры ничем не ограничено. Способность структурированных систем к обратимым изотермическим разрушениям и восстановлениям структурного состояния называется тиксотропией. Внешним признаком разрушения структуры может быть заметное разжижение взвеси. Восстановление структуры при этом сопровождается ее загустеванием. Этот процесс может занимать достаточно большое время (минуты, часы), а может происходить и практически мгновенно. Частным проявлением тиксотропии служит зависимость вязкости взвеси от времени, если восстановление структуры происходит достаточно медленно. Мгновенное тик-сотропное восстановление структурного состояния и, соответственно, механических свойств дисперсных [c.677]

    Состояние дисперсионных коллоидов характеризуется избытком свободной энергии, причем укрупнение частиц происходит самопроизвольно, обусловливая уменьшение величины Следовательно, дисперсионные коллоиды термодинамически неустойчивы их временная стабильность может быть связана с наличием энергетического барьера, предотвращающего сближение и взаимную фиксацию частиц на сравнительно малых расстояниях друг от друга (флокуляция) или полное объединение микрообъектов (коалесценция). Исходя из этого, различают дисперсии, устойчивые к флокуляции, и дисперсии, устойчивые к коалесценции. Во флокулированном, но устойчивом к коалесценции состоянии отдельные частицы объединены в очень крупные агрегаты и образуют так называемую коагуляционную структуру. Они сохраняют индивидуальность и разделены тонкими прослойками дисперсионной среды, содержащей в ряде случаев поверхностно-активные и макромолекуляриые вещества. Разрушение таких слоев, сопровождающееся либо полным объединением частиц в пенах и эмульсиях, либо возникновением [c.10]

    Для повышения скорости диффузии десорбируемой воды желательно увеличивать поверхность анализируемой пробы за счет уменьшения объема частиц. Однако в процессе измельчения могут измениться механические и термические свойства воды. Например, при измельчении каменного угля [189, 25] и других природных продуктов происходит заметное уменьшение содержания исходной влаги. Даже в ядрах земляного ореха истинное содержание воды может быть определено за приемлемое время только с помощью двухступенчатого высушивания [180] (см. разд. 3.1.3.1, табл. 3-8). Например, в подвергнутых лиофильной сушке гидрозолях, коллоидах и гидрогелях в основном содержится свободная и связанная вода, причем полностью воду можно удалить только при высушивании гидрозолей в термостате в течение нескольких часов при ПО—150°С [157]. Силикагель, например, прогретый в вакуууме в течение нескольких часов при 300 °С, еще содержит не менее 4,8% воды [263] это остаточное количество воды удаляется при температуре выше критической температуры воды, причем не происходит заметного разрушения структуры силикагеля и изменения его адсорбционных свойств. В белках остается 2—7% воды даже носле высушивания в обычном термостате до постоянной массы [298]. В белке эдестине, содержащем 12,3% воды, после [c.76]

    II Овербеком (1948), объясняет свойства эмульсий. Следует отметить, что теорию ДЛВО (название которой состоит из инициалов основных авторов теории) первоначально применяли для систем с классическими неорганическими солями. Устойчивость содержащихся в них субмикроскопических твердых частиц объяснялась электростатическим зарядом последних. Нужно подойти с осторожностью в применении этой теории к микроскопическим каплям масла, стабилизированным адсорбируемыми эмульгирующими агентами. Она может довольно хорошо описывать стабилизацию эмульсий двойным электрическим слоем (например, ионными ПАВ) против коагуляции. Однако ее нельзя использовать для онределения скорости коалесценции капель эмульсии, ибо этот процесс зависит от вытеснения или разрушения адсорбированной пленки. Кроме того, она не применима к эмульсиям, стабилизированным твердыми частицами или гидрофильными коллоидами .  [c.92]

    С увеличением скоростного градиента вязкость растворов ВМВ вследствие разрушения ассоциатов и ориентации вытянутых молекул вдоль потока (как это имеет место в коллоидных растворах с анизодиаметрическими частицами) улгеньшается. Добавка веществ, способных влиять на взаимодействие коллоидов и макромолекул, изменяет вязкость дисперсных систем. [c.17]


Смотреть страницы где упоминается термин Коллоиды разрушение: [c.91]    [c.26]    [c.10]    [c.92]    [c.607]    [c.191]    [c.388]    [c.92]    [c.819]    [c.231]    [c.11]    [c.12]    [c.390]   
Химия справочное руководство (1975) -- [ c.498 ]




ПОИСК





Смотрите так же термины и статьи:

Коллоиды



© 2024 chem21.info Реклама на сайте