Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дисперсность определение

    Для элементов слоя из непористого материала определение Хт трудностей не представляет. Для пористых материалов необходимо учитывать теплопроводность среды, заполняющей поры и структуру пор. Отличие пористых тел от зернистых засыпок состоит в том, что твердая фаза здесь является сплошной, а газовая или жидкая может быть дисперсной. На коэффициент теплопроводности пористого тела Хтэ влияет как внутренняя пористость, так и средний диаметр пор, Точнее, отношение этой величины к длине свободного пробега молекул газа, заполняющего поры [3, 18]. [c.107]


    Кроме превращений структурной единицы с ядром, состоящим из ассоциатов асфальтенов, в дисперсионной среде, по мере нагревания, могут сформироваться новые центры дисперсной фазы в виде зародышей ассоциатов полициклических аренов с высокомолекулярными углеводородами и гетероатомными соединениями с функциональными группами и гетероатомами. Вокруг каждого зародыша формируется сольватный слой, из которого происходит переход компонентов в ящю, ведущее к увеличению его размеров. Таким образом, при определенных высоких температурах в нефтяном остатке происходит накопление [c.26]

    Реологические свойства пластичных смазок. Пластичные смазки по определению являются пластичными аномально вязкими телами. Их реологические свойства значительно сложнее, чем у жидких масел (жидкостей), что определяет коренные различия условий оптимального применения масел и смазок [284]. Пластичные смазки представляют собой дисперсные системы класса псевдогелей. Частицы загустителя (мыла, парафин, церезин, пигменты), имеющие коллоидные размеры, образуют структурный каркас смазки, подобный губке. Поры каркаса удерживают дисперсионную среду — жидкое масло.-Наличие жесткого структурного каркаса наделяет смазки свойствами твердого тела. [c.271]

    Пластичные смазки, а в определенной степени и парафинистые масла, при низких температурах являются тиксотропными системами. При нагружении таких систем в момент достижения предела прочности при сдвиге лавинообразно разрушаются основные связи в структурном каркасе. Это соответствует скачкообразному снижению предела прочности от измеряемой величины до нуля. После перехода за предел прочности смазка становится жидкостью. При снятии нагрузки между фрагментами дисперсной фазы (частицами загустителя) практически мгновенно возникают новые связи и формируется новый структурный каркас. Если бы размер и форма частиц дисперсной фазы, прочность и число контактов между ними при деформировании смазки не менялись, то и все свойства смазки сохранились бы неизменными. Фактически дело обстоит сложнее. [c.274]

    Методы структурного анализа моно- и поликристаллов широко используются для решения различных прикладных вопросов установление фазового состава, определение ориентации кристаллов и кристаллических срезов, определение истинных коэффициентов теплового расширения кристаллических веществ, измерение деформаций решетки и внутренних напряжений, анализ дисперсности, определение текстур, контроль процессов отжига и рекристаллизации и т. д.). [c.15]


    Из всех известных методов оценки дисперсности определение удельной поверхности пыли методом воздухопроницаемости [39, 84, П2] в наибольшей мере соответствует физическому процессу фильтрации газа через слой осадка в рукавных фильтрах. Другим преимуществом метода воздухопроницаемости являются простота применяемых устройств, малая трудоемкость определений и [c.219]

    В связи с возможностью исследования дисперсных материалов с помощью электронного микроскопа иногда высказывается мнение, что рентгеновские методы измерения дисперсности утратили свое значение. Но такое заключение недостаточно обосновано и неправильно. Эти два метода следует рассматривать как дополняющие, но отнюдь не исключающие друг друга. С помощью электрон -ного микроскопа можно получить более полную характеристику дисперсности путем определения кривой распределения кристаллов по размерам, что, правда, представляет собой трудоемкую задачу. Величина же средней дисперсности определяется рентгенографически, причем для этого можно использовать рентгенограмму, полученную при фазовом анализе. Исследование активной окиси магния, проведенное рентгеновской лабораторией и лабораторией технического катализа Института имени Л. Я. Карпова , показало, что величина средней дисперсности, определенная рентгенографически, хорошо согласуется с величиной удельной поверхности, определенной адсорбционным методом—значительно более трудоемким, чем рентгеновский. Результаты методической работы в этом направлении изложены в докладе Н. Г. Севастьянова (см. стр. 85). [c.18]

    Еще более сложным оказывается влияние названных условий приготовления осадков на свойства сложных оксидных катализаторов. В этом случае при осаждении обычно требуется получить возможно более однородную смесь гидроксидов, имеющих оптимальную дисперсность. Определенная трудность возникает в связи с тем, что осаждение гидроксидов различных металлов происходит при различных значениях pH. Например, надо приготовить смесь гидроксидов Со и Сг, чтобы в дальнейшем образовалась смесь соответствующих оксидов. Гидрок-сид хрома выпадает из раствора в осадок при pH = 5,3, а гидроксид хрома в этих условиях не образуется. Для него необходимо повысить pH раствора до 6,8. Следовательно, при добавлении щелочи в растворы двух солей Со и Сг сначала выпадает гидроксид хрома, а затем кобальта. После прокалива- [c.17]

    Таким образом, в электронографии метод стандартов), должен применяться с большой осторожностью, так как он легко может привести к грубо ошибочным результатам в тех случаях, когда дисперсность определенной добавки, вводимой в стандартную смесь для калибровки, резко отлична от дисперсности ее в изу- [c.41]

    Независимо от определения обобщенных характеристик зернистого слоя обычно необходимо также измерить линейные размеры элементов слоя и распределение элементов по размерам — дисперсный состав. В интересующих нас пределах дисперсности зерен от 20 мкм и выше, для измерения размеров частиц используются [62]  [c.52]

    Непосредственный обмер отобранных порций частиц измерительным инструментом применим для частиц 3 мм и выше [64]. Более редко используют седиментацию в жидкости — до 200 мкм и отдувку или седиментацию в газе — до 200 мкм. Для часТиц размером более 100 мкм очень удобно по нашему опыту ие-пользовать инструментальные микроскопы, которые позволяют определять не только средний диаметр, но и другие геометрические размеры отдельных зерен, необходимые для оценки их коэффициентов формы. Для определения дисперсного состава доменного кокса применяют сита большого размера с квадрат- [c.52]

    Дадим следующие определения инфинитезимальных интенсивностей процессов получения дисперсных систем в условиях кавитационно-акустического воздействия  [c.134]

    В этих условиях наблюдались следующие реакции гидрогенолиз пентана с образованием метана, этана и бутана, изомеризация в изопентан и Сз-дегидроциклизация с образованием циклопентана. Влияние времени контакта на протекание реакций по названным направлениям представлено на рис. 13. Для циклизации наблюдается насыщение, что авторы объясняют достижением равновесия реакции изомеризации и гидрогенолиза не лимитируются равновесием. Показано, что увеличение температуры прогрева катализатора выще 200 °С ведет к уменьщению удельной поверхности металла, а прокаливание его при 700°С вызывает рост кристаллитов (от 0,7 до 15,0 нм). При обработке катализатора кислородом частицы металла подвергались поверхностному окислению и мигрировали по поверхности носителя, образуя крупные кристаллиты. Изменение дисперсности металла сильно влияло на скорость гидрогенолиза ( 1). Скорость изомеризации (Уг) гораздо меньше зависела от дисперсности металла и в определенном интервале мало снижалась при увеличении размера кристаллитов. Соответственно, отношение скоростей зависит от размера кри- [c.93]


    Главной отличительной особенностью смол является то, что они растворимы в алканах, имеют малую степень ароматичности, поли-дисперсны и не имеют определенной структуры. [c.19]

    При изменениях температуры подвижность структурных жидкостей изменяется в том же направлении, как и ньютоновских, а именно снижается при понижении температуры, поскольку при охлаждении повышается вязкость жидкой среды, а для нефтяных жидкостей, в частности нефтяных масел, увеличивается также и выделение дисперсной фазы в виде парафина и возрастает связь между ее частицами, что в конечном итоге нри определенной температуре приводит к потере подвижности. [c.10]

    Оценка моющей эффективности присадок производится также по методу определения моющего потенциала (ГОСТ 10734—64). Метод заключается в окислении испытуемого масла при температуре 250° С в присутствии эталонного вещества, образующего в этих условиях дисперсную фазу, и в последующем отделении образовавшегося осадка путем фильтрации и оценки его. [c.221]

    Определенный вклад в степень извлечения при экстракции вносит концевой эффект, т. е. массопередача в период образования капель. Здесь также существенным является отдельное рассмотрение процесса массопередачи в объеме лимитирующей фазы. Особенности массо-и теплообмена в период образования капель и оценка величины эффекта при лимитирующем сопротивлении дисперсной или сплошной фаз рассмотрены в разделе 4.5. [c.168]

    Стабильность дисперсной фазы в масле в присутствии моюще-диспергирующих присадок, как правило, снижается с повышением температуры, что связано с преобладанием процесса десорбции присадок с поверхности твердой фазы. Для присадок разных типов существуют определенные температурные пределы эффективности их стабилизирующего действия (рис. 4.9). [c.217]

    В работе [145] проведено экспериментальное определение зависимости коэффициента присоединенной массы шара, колеблющегося в жидкости с большой частотой (Ке>10 ) в окружении неподвижной упорядоченной системы шаров. В интервале значений от 0,05 до 0,45 экспериментальные данные хорошо описываются уравнением ф) = = /г (1 + 3,52(р ). По данному уравнению значение коэффициента присоединенной массы в стесненном потоке при <,г = 0,45 превышает значение этого коэффициента для одиночной частицы в 1,8 раза. Остается неясным, однако, в какой мере закрепленная решетка шаров может моделировать подвижную дисперсную систему. [c.85]

    Для определенности будем рассматривать аппарат в виде усеченного конуса, который сужается в направлении движения дисперсной фазы. Пусть дисперсная фаза вводится сверху при Н=Н, где Н — высота усеченного конуса (высота рабочей зоны аппарата). Нетрудно показать,что в этом случае [c.103]

    Точность метода при определении параметров при захлебывании ниже, чем при определении концентрации дисперсной фазы, особенно при больших расходах сплошной фазы. Для получения более точных результатов в этой области рекомендуется определять несколько значений расходов фаз при захлебывании и проводить графическое осреднение с использованием фиксированной точки д = 0, = 1. [c.109]

    Для определения гидродинамических характеристик дисперсного потока жидкость-жидкость в режиме взвешенного слоя может быть использована корреляция, предложенная в работе [134]. Уравнение корреляции (2.61), записанное с учетом (2.113), можно представить в виде, удобном для графического решения  [c.110]

    И в том, и в другом случае необходимо иметь систему уравнений для определения лишь трех неизвестных функций возмущения концентрации дисперсной фазы а и малых отклонений (возмущений) приведенных скоростей фаз Уд и Ус от стационарных значений. Волновое уравнение, описывающее распространение малых возмущений объемной концентрации дисперсной фазы а, получено нами ранее. Уравнения, связывающие возмущения приведенных скоростей фаз 7д и Ус с а, получим следующим образом. Представим приведенные скорости фаз в линеаризованном виде  [c.119]

    Ультразвуковой метод обработки газов и жидкостей [5.2, 5.55, 5.58]. Метод основан на воздействии ультразвуковых колебаний на системы Г — Т, Ж —Т, Ж1 — Жг, Г — Ж. Под действием ультразвука получают устойчивые эмульсии двух несмешивающих-ся жидкостей, измельчают твердые тела, повышая дисперсность частиц и устойчивость суспензий, диспергируют жидкость в газе с образованием тумана из частиц диаметром 0,5—5 мкм. В то же время воздействие звуковых колебаний на дисперсные системы (дымы, пыли, туман и т. д.) при определенных условиях приводит к быстрой коагуляции аэрозолей и взвесей с образованием осадков. Ультразвуковые волны при прохождении через жидкость способствуют ее дегазации и ускоряют диффузионные процессы. В 3—4 раза ускоряются сорбционные процессы при ионообменной [c.483]

    Раздельное определение концевого эффекта на входе дисперсной фазы в колонну и при выходе из нее представляет собой для малого времени образования частиц сложную, еще не решенную задачу. При малом времени формирования частиц оба концевых эффекта соизмеримы. Струйный режим истечения также относится к этому случаю, поскольку время пребывания элемента жидкости в струе мало. С особыми трудностями приходится сталкиваться при определении концевого эффекта в процессе образования пузырей, что будет обсуждаться ниже. [c.211]

    Синтез и исследование высокодисперсных Pt—5102-ката-лизаторов описаны Бенеси и Куртисом [251]. Катализаторы получали ионным обменом комплексов Р1(ЫНз)4 + из разбавленных растворов [Р1(МНз)4]С12 и шропиткой растворами Н2Р1С1б с последующей сушкой и восстановлением при 500° С. Платина в катализаторах, полученных ионным обменом, имеет высокую дисперсность, определенную по очень размытым линиям на рентгенограммах в 10 4 А. В пропиточных катализаторах, когда кристаллы образуются в порах, захвативших раствор, и сравнимы с ними по размеру, линии на рентгенограммах четкие и размер кристаллов 40 А. [c.79]

    В целом сложные структурные единицы нефтяных остатков находятся в динамическом равновесии со средой и изменение размеров ядер и толщины сольватной оболочки их могу г протекать по различным законам [14]. Главными факторами, определяющими возможность существования их в остатках и, соответственно, геометрические размеры, является наличие в них структурирующихся компонентов и ассоциатов, а также степень теплового воздействия. Нефтяные остатки относятся к свободнодисперсным системам, частицы которых могут независимо друг от друга перемещаться в дисперсной среде под влиянием теплового движения или гравитационньк сил. С изменением температуры в таких дисперсных системах изменяется энергия межмолекулярного взаимодействия дисперсной фазы и дисперсионной среды. Толстая прослойка дисперсионной среды между частицами снижает структурно-механическую прочность нефтяных дисперсных систем. Утоньшение сольватного слоя на поверхности ассоциатор повышает движущую силу расслоения системы на фа ы. Размеры основных зон структурной единицы при определенных температурах различны за счет того, что часть наиболее полярных компонентов сольватного слоя может переходить в дисперсную фазу (ядро), а часть в дисперсионную среду, находящуюся в молекулярном состоянии. Таким образом, по мере повышения температурь размеры радиуса ядра и толщины сольватного слоя могут проходить через экстремальные значения [14]. Ядро, состоящее из ассоциатов, при достижении максимальных размеров может распадаться на осколки, что ведет к образованию новых частиц дисперсной фазы, вокруг которых формируется сольватный слой и по мере изменения температуры для этих частиц характерны аналогичные стадии изменения размеров ядра и толщины сольватной оболочки. При высоких температурах и большой длительности нагрева внутри ядра может зародиться новая дисперсная фаза — кристаллит, представляющий собой надмолекулярную неябратимую структуру, обычно характерную для карбенов и карбоидов [14]. [c.26]

    Установлено, что при экстракции неполярными экстрагентами при гемпературах вблизи критического состояния растворителей также проявляется избирательная растворимость высокомолекулярных углеводородов масляных фракций. Обусловливается это тем, что с приближением температуры экстракции к критической про — исхо, ит резкое снижение плотности растворителя и соответственное ослабление прочности связей между молекулами растворителя и растворенных в нем углеводородов. В то же время силы дисперсионного взаимодействия между молекулами самих углеводородов при этом практически не изменяются. В результате, при определен — 1ГЫХ гемпературах внутримолекулярные силы углеводородов могут превысить межмолекулярные силы взаимодействия между растворителем и углеводородами и последние выделяются в виде дисперсной фазы. При этом, поскольку энергия дисперсионного взаимодействия является функцией от молекулярной массы молекулы, в первую очередь из раствора выделяются наиболее высокомолекулярные смолисто-асфальтеновые соединения, затем по мере повышения температуры — углеводороды с меньптей молекулярной массой. При температурах, превышающих критическую,из раствора выделяются все растворенные в нем соединения независимо от молекулярной массы и химической структуры углеводородов (рис.6.4). [c.221]

    Критическое или пороговое содержание смол, после достижения которого начинается интенсивное асфальтенообразование, зависит от температуры нагрева и от типа нефти, из которой был получен остаток. Чем выше температура процесса и содержание серы в сырье, тем ниже пороговое содержание смол [23]. Термические превращения асфальтенов, как и смол, начинают протекать интенсивно при достижении определенного порогового содержания их. При жестких условиях (высокая температура, длительный нагрев) асфальТены уплотняются с обра ванием новой дисперсной фазы - карбенов, из которых могут образоваться кар-боиды, составляющие основу для формирования коксовых отложений. [c.60]

    Следует отметить, что определение внешней порозности слоя и внутренней пористости его элементов евнутр — задача большого значения для дисциплин, имеющих дело с дисперсными и пористыми материалами. В первую очередь — это геология нефти [46], почвоведение [47], технология огнеупоров и строительных материалов [48], металлургия [49], физическая химия адсорбентов и катализаторов [50]. В последующем изложении мы не касаемся вопросов определения истинного удельного веса и внутренней пористости. В указанных выше монографиях [46— 50] имеется много материала по этим проблемам. Остановимся лишь на определении кажущейся плотности зерен. [c.48]

    Как было показано в работе [60], определение ао по течению в вязкостном режиме с газом при диаметрах частиц, меньших 60 мкм (применялись микросферы из полистирола), дает резко заниженное значение против непосредственно определенных значений о из замеров под микроскопом. -В этих же условиях измерение ао в молекулярном режиме течения дало хорошее совпадение с результатами прямого расчета [60]. При условии введения поправок на молекулярный режим предел измерения ао с применением газа и расчетом по (П. 55) снижается до диаметра частиц 10 мкм и ао 0,6 м /см Жидкостные приборы также могут быть использованы примерно до этих же значений. При использовании вязкостного режима, верхний предел дисперсности определяется еще диаметром ячейки (аппарата) (d < 0,05 >ап, см. ниже) и чувствительностью прибора, замеряющего перепад давления в зернистом слое. Удельную поверхность частиц диаметром более 1 мм обычно определяют в интервале скоростей,- где перепад давления линейно зависит от скорости, пропускаемой через слой жидкости [26, R. В. M Mul-lin 36]. [c.51]

    На послед)пощих стадиях, когда выработаны физико-химический (особенности взаимодействия внутренней и внешней фаз конкретной дисперсии) и энергетический (количество подводимой для диспергирования энергии, обеспечивающей такое взаимодействие) ресурсы применительно к конкретной системе, что в эксперименте наблюдается как момент выхода на плато кинетической кривой, в объеме дисперсии, во-первых, сохраняется количество передаваемой энергии и, во-вторых, большая часть внутренней фазы уже имеет размер осколков , поэтому интегральное увеличение степени дисперсности невозможно при одновременно созданных условиях активного агрегирования этих осколков . Далее, при накоплении достаточного количества вторичных агрегатов вновь начинается процесс диспергирования далее совокупность этих процессов повторяется — из-за чего и наблюдаются осцилляции дисперсности. Здесь важно отметить тот факт, что часть привносимой энергии расходуется не только на достижение конечной цели, но и на возбуждение и поддержание паразитных осцилляций — это практическое замечание. Не менее важен и научно-познавательный аспект мы наблюдаем ранее не отмечавшееся явление кооперативного поведения многочастичных дисперсных систем в распределенных силовых полях. Подобные факты отмечались лишь в биологических, химических, экологических системах. Необходимо отметить, что в определенных условиях такое поведение свойственно и дисперсным системам, что отражает общенаучный характер этого явления. [c.128]

    Результаты работ Синфелта и сотр. [17—20] по исследованию влияния парциальных давлений этана и водорода на скорость гидрогенолиза достаточно хорошо согласуются с механизмом, предложенным Тейлором [2, 13]. При этом порядок реакции по углеводороду близок к единице и отрицателен по водороду. Полученные данные хорошо согласуются также с представлениями об интенсивном дегидрировании на поверхности, предшествующем медленной стадии разрыва С—С-св>1зей. Синфелтом [20] на примере гидрогенолиза алканов рассмотрена связь активности и селективности металлических катализаторов с положением металла в периодической системе элементов, а также некоторые вопросы определения дисперсности металлов, особенности их каталитического действия, катализ на биметаллических системах и сплавах. Отмечено, что тип активных центров на поверхности металла определяется его дисперсностью. Доля координационно ненасыщенных атомов, расположенных на ребрах и вершинах кристаллов, резко увеличивается с уменьшением размеров кристаллитов и почти равна единице в случае кластеров, включающих несколько атомов. Этим обусловлено влияние дисперсности металла на удельную активность металлических катализаторов, что проявляется для большой группы структурно-чувствительных реакций. При катализе на сплавах важное значение приобретает возможное различие составов на поверхности и в объемах сплавов. Введение в систему даже малого количества более летучего компонента часто приводит к значительному обогащению им поверхности сплава. [c.91]

    Магнитный метод газоводоочистки [5.18, 5.55, 5.64]. Сущность метода заключается в том, что дисперсная система с определенной скоростью пропускается через аппарат, в котором создается магнитное поле, в результате чего она приобретает новые свойства. В основе магнитного метода лежит магнитодинамика, изучающая законы поведения дисперсных ферромагнитных частиц в магнитных полях. Под действием сил поля можно изменить траектории движения частиц и отделить их от очищаемой среды. На практике магнитные силы чаще всего используют в сочетании с другими силами инерции, гравитации и т. д., что дает основание рассматривать в отдельных случаях магнитный метод очистки как дополнительный к известным основным методам отстаивания и фильтрации. [c.482]

    В работе [157] описывается приготовление и характеристика частично кристаллизованных пористых стекол с бидисперсным распределением размера пор. Показано, что Pt-катализаторы, нанесенные на такие пористые стекла, являются активными и селективными катализаторами образования бензола при Сб-дегидроциклизации алканов. При исследовании каталитических и физических свойств нанесенных на Si02 биметаллических систем (Pt—Au, Pt—Sn, Rh— u) прослежена определенная взаимосвязь между дисперсностью металлической фазы (рентгеновский метод) и активностью катализаторов в реакциях С5- и Се-дегидроциклизации н-гексана [158]. [c.244]

    При феноменологическом подходе структура указанных параметров постулируется на основе более или менее правдоподобных гипотез, а для нахождения коэффициентов, входящих в полученные соотношения, привлекаются экспериментальные данные. Метод осреднения дает возможность конкретнее и более обоснованно установить структуру указанных выше членов, связав их.с параметрами течения на уровне отдельных частиц (мелкомасштабного течения). Однако для того, чтобы связать эти параметры с параметрами осредненного движения фаз, приходится вводить достаточно приближенную схематизацию мелкомасштабного течения, поскольку точное определение локальных характеристик течения дисперсной смеси практически невозможно. Окончательный вид выражений для тензоров напряжений в фазах и силы межфазного взаимодействия в зависимости от способов осреднения и принятых схем мелкомасштабного течения оказывается различным. Кроме того, эти выражения могут быть получены аналитически лишь для предельньгх случаев движения дисперсной смеси, когда сплошная фаза — очень вязкая или идеальная жидкость. Поэтому в дальнейшем для определения структуры указанных выше членов будем использовать в основном феноменологический подход, привлекая лишь в некоторых случаях результаты, полученные аналитическими методами. [c.60]

    Полуэмпирические и эмпирияеские методы определения ошы вязкого сопротивления. Результаты, полученные аналитическими методами, в настоящее время не найти еще применения для проведения инженерных расчетов. Это связано с тем, что применимость их ограничена как по концентрациям дисперсной фазы, так и по числам Рейнольдса. Однако значение этих результатов достаточно велико, поскольку они являются теоретической основой для разработки обобщенных коррелящ1Й, охватывающих весь практически важный диапазон концентращ1й и чисел Рейнольдса. [c.74]

    Режимы движения фаз в колонных аппаратах чрезвычайно многообразны. Знание закономерностей поведения фаз в каждом режиме и пределов изменения гидродинамических параметров, в которых существует тот или иной режим, соверщенно необходимо при правильном определении условий проведб йя химических и тепло-массообменных процессов. Многообразие режимов движения фаз в аппаратах колонного типа обусловлено многими факторами в частности, многообразием участвующих в движении сред (твердые, жидкие и газообразные), многообразием величин и направлений скоростей фаз, различными условиями ввода и вывода фаз, возможностью возникновения различного рода неустойчивостей в двухфазном потоке, возможностью протекания процессов дробления и коагуляции частиц, а также влиянием поверхностно-активных веществ и различных примесей на поведение капель и пузырей. Однако при всем многообразии различного вида течений, встречающихся в колонных аппаратах, можно вьщелить определенный класс дисперсных потоков, которые имеют ограниченное число установившихся режимов, а поведение фаз в этих режимах определяется общими для всех систем закономерностями. Такие потоки можно назвать идеальными. Они существуют при скоростях движения фаз, сравнимых со скоростью их относительного движения. При этом частицы распределены достаточно равномерно по сечению аппарата если и существуют градиенты концентрации дисперсной фазы, то они имеют конечную величину. Это означает, что концентрация частиц в среднем меняется от точки к точке непрерывным образом. Форма частиц близка к сферической, а их размер не слишком отличается от среднего размера частиц в потоке. [c.86]

    Для определения зависимостей объемной концентрации дисперсной фазы и скоростей фаз и от текущей высоты к уравнение стационарного движения частиц в аппарате (2.72) необходимо решать совместно с соотношениями (2.102). Представляет интерес установить, при каких условиях можно пренебречь инердаонными членами в уравнении движения и решать задачу в квазиравновесном приближении. Из физических соображений ясно, что зто можно сделать в том случае, когда [c.103]

    Характерное время установления нового стационарного гидродинамического режима в затопленном аппарате с дисперсным потоком сравнительно невелико. Оно составляет величину порядка Я/г/ц,, где Я — высота рабочей зоны аппарата, а — скорость распространения возмущения концентрации дисперсной фазы, и может изменяться в пределах от нескольких секунд до нескольких минут. Для сравнения отметим, что время установления нового стационарного распределения концентрации растворенного компонента или температуры в сплопшой фазе иногда может достигать нескольких часов и более. Поэтому при модели-рствании переходных химических, массо- и теплообменных процессов в затопленных аппаратах учет гидродинамической обстановки в целом ряде случаев может быть проведен в квазистационарном приближении. Однако, когда характерные времена протекания этих процессов соизмеримы с характерным временем установления нового стационарного гидродинамического режима в аппарате, квазистационарное приближение приводит к значительным погрепшостям при определении динамических характеристик аппарата. В этом случае переходные гидродинамические процессы должны быть учтены при разработке динамических моделей химических и тепломассообменных процессов. [c.113]

    В начале 1980 гг. стало окончательно ясно, что модель дисперсного потока, математическим выражением которой является система (2.16), (2.17), не достаточно полно описьтает протекающие в нем процессы. По всей вероятности, в реальных потоках действуют такие неучитываемые моделью механизмы, которые при определенных условиях способны стабилизировать течение. Все эти механизмы имеют диссипативный характер и связаны с мелкомасштабным хаотическим движением частиц. В ряде работ советских авторов [177, 192-194] были выявлены основные эффекты, обеспечивающие устойчивость движения частиц в дисперсном потоке. Это - псевдотурбулетная диффузия частиц, вызываемая их гидродинамическим взаимодействием [192-194], и давление в дисперсной фазе, возникающее из-за столкновений частиц [177, 194]. В работе [194] отмечен также эффект пульсаций ускорения жидкости, который при определенных условиях также способствует стабилизации течения. [c.135]


Смотреть страницы где упоминается термин Дисперсность определение: [c.146]    [c.88]    [c.120]    [c.103]    [c.3]    [c.107]    [c.112]    [c.120]    [c.136]   
Учение о коллоидах Издание 3 (1948) -- [ c.47 ]




ПОИСК







© 2025 chem21.info Реклама на сайте