Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Двойной электрический Гуи Чэпмена

Рис. 88. Модель двойного электрического слоя согласно теории Гуи — Чэпмена Рис. 88. <a href="/info/134019">Модель двойного электрического слоя</a> согласно теории Гуи — Чэпмена

    Здесь значения представляют собой относительную концентрацию противоиона, необходимую для снижения электрокинетического потенциала до одного и того же значения, например 50 мВ. Как видно, этот ряд не дает каких-нибудь точных отношений. Этого, впрочем, и нельзя было ожидать, так как способность иона сжимать двойной электрический слой зависит не только от его валентности, определяющей электрическое взаимодействие со стенкой, но и от его размера, поляризуемости, способности гидратироваться и т. д. Мюллер, исходя из представлений Гуи и Чэпмена, чисто математическим путем показал, что способность противоионов понижать -потенциал действительно должна быстро расти с их валентностью, причем для случая плоской поверхности раздела его вычисления дали такой ряд  [c.180]

    Несостоятельность теории Гуи — Чэпмена может быть показана и другим путем. Если раствор электролита не очень разбавлен (например, 0,1 н.) и потенциал у стенки высок (например, 200 мВ), то для того, чтобы теоретическое и экспериментально найденное значения емкости совпадали, концентрация противоиона около стенки должна быть равна 300 н., что совершенно невозможно. Причина расхождения экспериментально и теоретически найденных значений емкости двойного электрического слоя заключается в том, что теория Гуи — Чэпмена не принимает во внимание размера ионов, рассматривая их как точечные заряды, которые могут сколь угодно близко подойти к стенке, что и обусловливает более высокие значения расчетных величин. [c.184]

    Далее теория Гуи — Чэпмена не объясняет различного действия разных по природе противоионов одной и той же валентности на двойной электрический слой. Согласно этой теории введение эквивалентного количества разных противоионов одинаковой валентности должно сжимать двойной электрический слой и понижать -потенциал в одинаковой степени. Однако опыт показывает, что это не так. Эффективность действия ионов одной и той же валентности на двойной электрический слой возрастает суве-личением радиуса иона.. [c.184]

    Значения емкости двойного электрического слоя, вычисленные по теории Штерна с учетом радиусов ионов, оказались близкими к экспериментально найденным, и, таким образом, эта теория преодолела один из недостатков, присущий теории Гуи —Чэпмена. Далее, в отличие от теории Гуи — Чэпмена, теория Штерна может объяснить причину изменения знака электрокинетического потенциала при введении в систему м оговйЛёктньТх ионов, заряд которых противоположен по знаку заряду дисперсной фазы. Такие многовалентные ионы втягиваются в адсорбционный .г.лпй как из-за сильных электростатических взаимодействий, так и из-за большой адсорбируемости, связанной с поляризуемостью таких ионов. Ионы [c.188]


    Согласно Штерну, первый слой или даже несколько первых слоев противоионов притягиваются к стенке под влиянием как электростатических, так и адсорбционных сил. В результате этого часть противоионов удерживается поверхностью на очень близком расстоянии, порядка 1—2 молекул, образуя плоский конденсатор толщиной б, предусмотренный теорией Гельмгольца — Перрена. Этот слой, в котором, естественно, наблюдается резкое падение электрического потенциала, одни авторы называют гельмгольцевским, другие — штерновским, третьи — адсорбционным слоем. Остальные противоионы, нужные для компенсации потенциалопределяющих ионов, в результате теплового разбрасывания образуют диффузную часть двойного слоя, в которой они распределены согласно тем же законам, что и в диффузном слое Гуи — Чэпмена. Эту часть двойного слоя, в которой потенциал падает относительно постепенно, иногда называют сло мХм.и. Схема двойного электрического слоя по Штерну и падение в нем электрического потенциала показаны на рис. vn, 11. [c.185]

    Так как значение первого члена выражения в фигурных скобках в правой части равенства меняется с концентрацией сильнее, чем значение второго, то, очевидно, при разбавлении раствора 01 уменьшается быстрее, чем Ог, и структура слоя приближается к модели Гуи — Чэпмена, при увеличении же концентрации структура двойного электрического слоя приближается к модели Гельмгольца. Таким образом, анализ уравнения (VII, 27) приводит к тем же выводам, к которым мы пришли ранее на основании общих положений. [c.188]

    Электрическую структуру коллоидной частицы, имеющую постоянный диполь, можно в первом приближении представить как взаимодействие двойного электрического слоя Гуи —Чэпмена и дипольной структуры (рис. VII, 14). [c.191]

    Первый случай рассмотрен при обсуждении теорий Гуи — Чэпмена и Штерна. Очевидно, по мере увеличения содержания в системе такого электролита толщина двойного электрического слоя стремится стать равной толщине адсорбционного слоя за счет сжатия диффузного слоя. В результате -потенциал понижается, пока не станет равным нулю, что будет отвечать так называемому изоэлектрическому состоянию системы. [c.191]

    Недостаток теории диффузионного двойного ионного слоя, развитой Гуи и Чэпменом, заключается в том, что эта теория не учитывает собственного объема ионов, что предполагает сколь угодно близкий подход последних к поверхности металла и в конечном итоге ведет к завышению величины емкости, рассчитываемой по уравнению (ХУ.20). Таким образом, теория Гуи и Чэпмена не дает правильных количественных расчетов величины емкости двойного электрического слоя. [c.418]

Рис. 13. Схематическое представление изменения потенциала вдоль электрического двойного слоя, согласно моделям о - Перрена б - Гуи и Чэпмена в - Рис. 13. Схематическое представление <a href="/info/133432">изменения потенциала</a> вдоль <a href="/info/2476">электрического двойного слоя</a>, согласно моделям о - Перрена б - Гуи и Чэпмена в -
    Представление о двойном электрическом слое, как о плоском конденсаторе, развитое в классических работах Гельмгольца, получило дальнейшее развитие в трудах Смолуховского, Гуи, Чэпмена, Штерна и других ученых. [c.176]

    На распределение ионов в двойном электрическом слое по теории Штерна сильно влияет природа противоионов. Если противоионы обладают различной валентностью, то толщина диффузного слоя и число противоионов в адсорбционном слое определяются, главным образом, валентностью ионов и, следовательно, обусловливаются электростатическими силами. Понятно, диффузный слой тем тоньше и -потенциал тем ниже, чем больше валентность противоионов. При этом надо принимать во внимание те же соображения, что и при объяснении влияния валентности противоиона на -потенциал по теории Гуи — Чэпмена. [c.186]

    Второй случай, когда в систему вводится электролит, не содержащий обоих ионов с электролитом — стабилизатором, отличается от первого только тем, что здесь имеет место явление об- мена противоионов коллоидной частицы на эквивалентное число одинаковых по знаку ионов введенного электролита. Наиболее простой обмен ионов происходит, когда на поверхности твердой фазы имеется двойной электрической слой типа Гуи— Чэпмена, т. е. когда можно пренебречь специфическим адсорбционным потенциалом ионов. Очевидно, при этом обмен будет определяться только валентностью ионов. Например, если отрицательно заряженная дисперсная фаза находится в растворе, содержащем два [c.191]

    Теория Штерна. В 1924 г. Штерн предложил схему строения двойного электрического слоя, в которой он объединил схемы Гельмгольца — Перрена и Гуи — Чэпмена. Разрабатывая теорию двойного электрического слоя, Штерн исходил из двух предпосылок. Во-первых, он принял, что ионы имеют конечные, вполне определенные размеры и. следовательно, центры ионов не могут находиться к поверхности твердой фазы ближе, чем на расстоянии ионного радиуса. Вд-втррых, Штерн учел специфическое, не электрическое взаимодействие ионов с поверхностью твердой фазы. Это взаимодействие обусловлено наличием на некотором малом расстоянии от поверхности поля молекулярных (адсорбционных) сил. Как будет показано при обсуждении причин устойчивости и коагуляции коллоидных систем, молекулярные силы, действующие между телами, состоящими из множества молекул, вследствие своей аддитивности являются относительно дальнодействующими. [c.184]


    Возникновение диффузного слоя ионов в растворе вблизи межфазной границы обусловлено равновесием между притяжением (отталкиванием) ионов к заряженному электроду и выравниванием ионных концентраций за счет тепловой диффузии. Это равновесие было теоретически рассмотрено в работах Гуи [2] и Чэпмена [3]. Трактовка этих авторов близка к теории сильных электролитов Дебая-Хюккеля. Теория Гуи-Чэпмена основана на ряде не вполне строгих предположений. Например, в этой теории ионы рассматриваются как точечные заряды, а также принимается, что при переносе ионов к границе раздела фаз затрачивается лишь электростатическая работа. Поэтому теория Гуи— Чэпмена является точной лишь для разбавленных растворов. Далее, в этой теории принимается, что роль растворителя в электрическом взаимодействии между ионом и электродом можно учесть с помощью макроскопической диэлектрической проницаемости. Это предположение в электрохимической теории весьма распространено и зачастую неизбежно, однако его пригодность для описания электростатических взаимодействий на расстояниях, сравнимых с молекулярными размерами, в высшей степени сомнительна. Тем не менее простую теорию двойного слоя с успехом применяли к целому ряду растворителей в различных условиях. Успехи теории частично объясняются тем обстоятельством, что в области ее несостоятельности (при больших концентрациях электролита или больших напряжениях) диффузный слой слабо влияет на свойства двойного слоя. Вывод основных уравнений диффузного слоя довольно прост и будет опущен. Подробное рассмотрение вопроса читатель найдет в обзоре Грэма [7]. [c.67]

    Согласно теории ДЛВО, стабилизация происходит в результате действия спл отталкивания между коллоидными частицами, которые несут двойные электрические слои. Двойные слои могут быть оппсаны классической теорией Гун — Чэпмена или ее модификацией. Частпцы сами несут электрический заряд и окр> аются диффузным слоем ионов равного и противоположного по знаку заряда отталкивание происходит прп перекрытии диффузных слоев. Так как теория взаимодействия перекрывающихся диффузных слоев непроста, здесь будет приведена единственная приемлемая рабочая формула. [c.96]

    Частные теории посвящены описанию зависимости фазовых переходов в бислое от параметров системы. В модели Трейбла и Эйбла (1974) в качестве такого параметра рассматривают свойства полярных групп липидов. В противоположность электронейтральным (цвиттерионные) липидам у заряженных липидов обычно наблюдается четкая зависимость температуры перехода от многих факторов, определяющих заряд липидов (pH, ионная сила, адсорбция ионов и т.д.). Если бы взаимодействие заряженных групп сводилось к простому отталкиванию одноименных зарядов, то фазовые переходы в заряженных липидах должны были бы происходить при более низких температурах, чем в электронейтральных. Фактически наблюдается обратная картина. В модели вклад электростатического взаимодействия в изменение энтальпии при фазовом переходе определялся в предположении, что свободная энергия заряженной поверхности зависит от плотности поверхностного заряда. В том случае, если заряды на поверхности липидного бислоя распределены равномерно, свободная энергия двойного электрического слоя ср может быть рассчитана по уравнению Гуи—Чэпмена (см. 5 гл. ХУП1). [c.56]

    Теория Гуи — Чэпмена. Значительным шагом вперед явилась теория двойного электрического слоя с диффузным слоем противоионов, предложенная независимо друг от друга Гуи (1910 г.) и Чэпменом (1913 г.). Эта теория в значительной мере устранила недостатки теории Гельмгольца — Перрена. По теории Гуи —Чэпмена противоионы не могут быть сосредоточены только у межфазной поверхности и образовывать моноионный слой, а рассеяны в жидкой фазе на некотором расстоянии от границы раздела. Такая структура двойного слоя определяется, с одной стороны, электрическим полем у твердой фазы, стремящимся притянуть эквивалентное количество противоположно заряженных ионов возможно ближе к стенке, а с другой стороны, тепловым движением ионов, [c.176]

    Из изложенного выше видно, что теория Штерна соответствует результатам экспериментальных наблюдений лучше, чем теория Гуи — Чэпмена. Благодаря уточнению роли размера ионов и введения представления об адсорбционном потенциале, она может объяснить ряд специфических особенностей действия тех или иных электролитов на двойной электрический слой и электрокинетический потенциал. Однако необходимо указать, что и эта теория не является совершенной, поскольку она исходит из ряда допущений и в ней имеется много неопределенностей, например, допущение о независимости адсорбционного пптрнпияля пт кnнттpнтpяпил-Jнтn едва ли вероятно." Следует также заметить, что представления [c.189]


Смотреть страницы где упоминается термин Двойной электрический Гуи Чэпмена: [c.186]    [c.28]    [c.919]    [c.109]    [c.418]   
Курс коллоидной химии (1976) -- [ c.176 ]




ПОИСК





Смотрите так же термины и статьи:

Гун Чэпмена теория строения двойного электрического

Гун—Чэпмена

Двойной электрический



© 2025 chem21.info Реклама на сайте