Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структура двойная

    Строение двойного электрического слоя в условиях специфической адсорбции. Адсорбция — концентрирование вещества из объема фаз на поверхности раздела между ними — может быть вызвана как электростатическими силами, так и силами межмолекулярного взаимодействия и химическими. Адсорбцию, вызванную силами неэлектростатического происхождения, принято называть специфической. Вещества, способные адсорбироваться на границе раздела фаз, называются поверхностно-активными (ПАВ). К ним относятся большинство анионов, некоторые катионы и многие молекулярные соединения. Специфическая адсорбция ПАВ, содержащегося в электролите, влияет на структуру двойного слоя и величину ф1 потенциала (рис. 172). Кривая 1 на рис. 172 соответствует распределению потенциала в двойном электрическом слое в отсутствие ПАВ в растворе. Если раствор содержит вещества, дающие при диссоциации поверхностно-активные катионы, то за счет специфической адсорбции поверхностью металла катионы будут входить в плотную часть двойного слоя, увеличивая ее положительный заряд (кривая 2). В условиях, способствующих усилению адсорбции (например, увеличение концентрации адсорбата), в плотной части может оказаться избыточное количество положительных зарядов по сравнению с отрицательным зарядом металла (кривая 3). По кривым распределения по- [c.474]


    Таким образом, модель Грэма может рассматриваться как модель, отражающая основные черты и особенности структуры двойного электрического слоя металл - электролит. Необходимо, одиако, подчеркнуть, что н она охватывает далеко не все аспекты этой проблемы. Отметим некоторые из них. [c.273]

    Как показали дальнейшие исследования, электрокинетические явления тесно связаны со свойствами поверхности и структурой двойного электрического слоя на межфазной границе. Вследствие той важной роли, которую они играют в коллоидных системах, их рассмотрению посвящена отдельная глава. В этой главе будут изложены и основные представления в области электрохимии двойного слоя, возникшие в большой степени в результате исследования электрокинетических явлений. [c.134]

    Рис, 12,6. Совмещение двух крайних структур двойного электрического слоя и результате кристаллографической неоднородности поверхности металла и адсорбции поверхностно-активных ионов [c.274]

Рис. 29. Структура двойного электрического слоя Рис. 29. <a href="/info/358584">Структура двойного электрического</a> слоя
    Теория электрохимического перенапряжения относилась первоначально к тому случаю, когда можно было пренебречь тонкой структурой двойного слоя и не учитывать распределения потенциала между его плотной и диффузной частями. Это допущение оправдывается (с наибольшей полнотой — в области малых перенапряжений), если выполнены следующие условия. [c.347]

    Изменение структуры двойного электрического слоя возможно в нескольких направлениях. При очень малых концентрациях электролитов, по мере заполнения активных центров поверхности потенциалопределяющими ионами, будет происходить увеличение е-потенциала. Противоионы с высокой адсорбционной способностью (например, многозарядные ионы) могут проникнуть в адсорбционный слой в количествах, сверх-эквивалентных первоначальным потенциалопределяющим ионам, вызывая изменение знака заряда поверхности с соответствующей перестройкой всего двойного электрического слоя (перезарядка коллоидов). [c.307]

    УЧИТЫВАЮЩАЯ СТРУКТУРУ ДВОЙНОГО слоя [c.353]

    Из табл. 4-4 видно, что чем больше объем мезо- и макропор у сажи, тем ниже объемная ее концентрация, соответствующая постоянной вязкости расплава. Повышенная пористость сажи увеличивает ее объем в связующем при одинаковых весовых соотношениях этих компонентов. Предельная объемная концентрация сажи, которая обеспечивает получение максимальной электропроводности, находится в интервале 0,2-0,3. При дальнейшем увеличении количества сажи электропроводность не изменяется. Это соответствует представлениям о смесях кокс-сажа-связую-щие и кокс-графит-связующее, где указанные объемные соотношения между порошковыми компонентами обеспечивают оптимальные свойства структур двойного каркаса [В-4]. [c.197]


    Существенно, что, варьируя ионный состав электролита, мол<-но менять толщину приповерхностного слоя. Например, ионы Са + способны вытеснять воду из области полярных головок и тем самым сжимать приповерхностный слой [430]. Обычно толщиной этого слоя пренебрегают и считают, что все поверхностные источники электрических полей строго локализованы на границе раздела бислой/липид, а сама эта граница считается геометрической плоскостью. Такое допущение позволяет проводить теоретический анализ электрических явлений на основе классической теории Гуи — Чепмена [431], в рамках которой структура двойного электрического слоя (ДЭС) определяется лишь поверхностными зарядами. При этом оказывается, что поверхностные электрические диполи, если они присутствуют в системе, не влияют на эту структуру. Существует целый ряд проблем, для которых предположение о локализации источников электрических полей строго на границе раздела является слишком грубым. Оказалось, что трехмерность распределения поверхностных электрических зарядов заметно влияет на элект- [c.150]

    В. Методы, основанные на изменениях структуры двойного электрического слоя переменный ток [c.10]

    Адсорбция Поверхностно активных веществ заметно влияет на структуру катодного осадка и на вид его поверхности. Изменение структуры двойного слоя, понижение его диэлектрической проницаемости влечет за собой падение [c.104]

    Если поверхность не проводит ток и заряды (т. е. адсорбированные ионы нли ионогенные группы) расположены редко, вокруг каждого заряда (согласно теории Дебая — Гюккеля) в растворе возникает ионная атмосфера. Если же заряды на поверхности коллоидной частицы расположены плотно и тем более если поверхность проводит ток, в этих условиях за счет обобществления ионных атмосфер отдельных зарядов образуется структура двойного электрического слоя. [c.315]

    Здесь во внимание принимается лишь общий скачок пoтeiIЦиaлa между металлом и раствором. Учет тонкой структуры двойного слоя, существенно влияющей на кинетику электрохимической реакции, сделан в следующем разделе. [c.349]

    На рис. 29 показана структура двойного электрического слоя плотного и диффузного строения. [c.79]

    Так как значение первого члена выражения в фигурных скобках в правой части равенства меняется с концентрацией сильнее, чем значение второго, то, очевидно, при разбавлении раствора 01 уменьшается быстрее, чем Ог, и структура слоя приближается к модели Гуи — Чэпмена, при увеличении же концентрации структура двойного электрического слоя приближается к модели Гельмгольца. Таким образом, анализ уравнения (VII, 27) приводит к тем же выводам, к которым мы пришли ранее на основании общих положений. [c.188]

    Промывание дистиллированной водой уменьшает концентрацию электролитов, что приводит к изменению структуры двойного электрического слоя — часть противоионов переходит из адсорбционного в диффузный слой, возрастает электрокинетический потенциал частиц коагулята. В результате осадок гидроксида или сульфида на фильтре уменьшается — пептизируется, проходя через поры фильтра в виде золя. [c.313]

    Предположение о равномерно размазанном заряде, будучи справедливым для металлической обкладки двойного слоя, не всегда оказывается приложимым к его ионной обкладке. В этом проявляется дискретный характер адсорбированных ионов. Поэтому для сопоставления с выводами, вытекающими при учете дискретной структуры двойного слоя, необходимо несколько подробнее остановиться на свойствах поверхностей с равномерно размазанным зарядом и напомнить некоторые сведения из области электростатики. [c.102]

    Рассмотрим особенности структуры двойного слоя, вызванные дискретным характером ионов. Предположим вначале, что поверхность электрода не заряжена ( =0), а раствор является концентрированным, так что эффективная толщина двойного слоя мала и все падение потенциала происходит в пределах плотного слоя ( фо=0). Если бы плоскость, на которой находятся специфически адсорбированные ионы, была эквипотенциальной, то напряженность поля, создаваемого такой плоскостью, не зависела бы от расстояния до плоскости (см, 21). Если же заряды дискретны, то такую плоскость в первом приближении можно рассматривать как сито, дырки которого отвечают местам, на которых [c.118]

    Теория Штерна дает качественно правильную картину двойного электрического слоя. Она широко используется при рассмотрении тех электрохимических явлений, в которых структура двойного слоя играет существенную роль. Но теория Штерна, как это отмечал сам автор, не свободна от мсдостатков. К их числу относятся невозможность количественного описания емкостных кривых — экспериментальные и расчетные кривые отклоняются друг от друга, особенно при удалении от потенциала нулевого заряда, несовместимость некоторых из ее основтых положений, например сохранение заряда в плотном слое при отсутствии специфической адсорбции, и т. д. [c.270]


    Нерешенным остается и вопрос, связанный с участием и вкладом электронов в структуру двойного слоя и с влиянием их иа основные характеристики двойного слоя. Этот вопрос приобретает сейчас особое значенне в связи с концепцией электронно-ионного равгговесия между электродом и электролитом. [c.274]

    Электрический потенциал и структура двойных электрических слоев мало зависят от размеров частиц. Однако увеличение удельной поверхности в дисперсной системе приводит к повышению концентрации противоионов двойного слоя,что в свою очередь может влиять на многие свойства системы, в том числе и на свойства этого слоя. Если противоионами в двойном электрическом слое являются Н+- или ОН -ионы, то наблюдается так называемый суспензионный эффект, сущность которого состоит в том, что значение рНс суспензии отличается от значения рНф выделенного из нее фильтрата. Количественно суспензионный эффект характеризуется величиной ДрНсэ = рНс—рНф, которая возрастает с увеличением концентрации дисперсной фазы в суспензии, а при постоянной массовой концентрации дисперсной фазы — с увеличением ее дисперсности, т. е. эффект повышается с увеличением межфазной поверхности в суспензии. Значение суспензионного эффекта уменьшается с повышением концеитрацпи электролитов в системе, что еще раз подтверждает указанную причину возникновения этого эффекта. Знак суспензионного эффекта (ДрНсэ) совпадает со знаком заряда поверхности (частиц, мембран). [c.343]

    Оба эти уравнения также дают возможность определить истинное. значение коэффициента переноса. Такой метод построения поляризационных кривых и определения величин а и /о был предложен Делахеем с сотр. и проверен на ряде электрохимических реакций. Метод предполагает, что величину гр1 можно рассчитать на основе теории двойного электрического слоя с использованием данных, относящихся к равновесным условиям. Допускается, что прохождение тока не изменяет существенно структуру двойного слоя. Это допущение оправдывается, по мигнию Делахея, с достаточно хорошим приближением вплоть до весьма высоких плотностей тока. [c.367]

    С меньщей уверенностью можно сделать заключение о природе процесса на других металлах второй электрохимической группы — свинце, цинке, кадмии и таллии. Больщинство экспериментальных данных свидетельствует о замедленном протекании разряда с последующей электрохимической десорбцией атомов водорода. Заметное повышение перенапряжения Еюдорода при переходе от положительно заряженной поверхности к поверхности, заряженной отрицательно, наблюдается на свинце, кадмии и таллии и связано с перестройкой двойного слоя, приводящей к десорбции анионов и прекращению их активирующего действия на разряд положительно заряженных гидроксониевых ионов Н3О+ (см. рис. 19.1). Если -бы скорость выделения водорода определялась не разрядом, а другой стадией, например рекомбинацией, то изменение структуры двойного слоя не могло бы вызвать такого изменения водородного перенапряжения. [c.414]

    Свсжеполучеиные коагуляты во многих случаях способны вновь переходить в состояние золя. Такой изотермический переход коагулят-> золь называют пептизацией, а вызывающие его вещества — п е п т и з а т о р а м п. Пептизаторы являются стабилизаторами дисперсных систем и могут быть веществами как ионной (электролиты), так и молекулярной природы. Адсорбируясь на пгизерхности первичных частиц, пептизаторы ослабляют взаимодействие между ними, что приводит к распаду агрегатов и переходу коагулята в состояние золя. Пснтизацию часто наблюдают при промывании дистиллированной водой находящихся на фильтре свежеполученных осадков гидроксидов и сульфидов металлов. Промывание дистиллированной водой уменьшает концентрацию электролитов, что приводит к изменению структуры двойного [c.338]

    Особенность структуры двойной связи приводит к появлению еще одного возможного гипа изомерии. В алканах (например, бутане) воз-молсно практически свободное вращение вокруг о-С-С связи вследствие симметричности ст-орбиталей относительно линии связей. [c.70]

    Проблема развития агрегирования частичек представляется важной задачей дальнейшего улучшения свойств коксопековых материалов и регулирования их структуры. Так, при повышенной лиофобизации поверхности частичек возможно создание, так называемых, рыхлых структур, которые последующими пропитками можно превращать в структуры двойных и [c.144]

    Методы, связанные с изменением структуры двойного электрического слоя (тензамметрия и др.). [c.100]

    Что касается влияния структуры двойного слоя и состояния ионов в растворе на кинетику, совместного разряда йодов, то этот фактор играет первенствующую роль как в процессе электроосйждения сплавов, так и в процессе перехода из раствора в осадок примесей при осаждении чистых металлов. [c.51]

    А. Л. Ротинян и В. Л. Хейфец в результате теоретачеокопо анализа приводят следующее выражение связывающее поляризацию со скоростью совместного (разряда ионов Мх, Мг и с характеристикой структуры двойного слоя  [c.52]

    На основатгии приведенных данных о совместном разряде ионов можно заключить, что изменение структуры двойного слоя на катоде при введении ионов в раствор ионов играет очень большую роль в кинетике совместного разряда катионов. [c.70]

Рис. 39. Структура двойного электрического слоя, обра-эава нного катионами Л1" и при избирательной Рис. 39. <a href="/info/1536468">Структура двойного электрического слоя</a>, обра-эава нного катионами Л1" и при избирательной
    Кинетика соеместного разряда катионов различных металлов, помимо явлений взаимодействия между осаждаемыми металлами на катоде, в основном определяется структурой двойного электрического слоя вследствие избирательной а.цсорбцин одних катионов, по сравнению с другими. [c.72]

    Адсорбируясь поверхностью металла, молекулы или ионы поверхностно активных веществ внедряются между обкладками двойного электрического слоя и оттесняют из него катионы, как бы раздвигая последний, увеличивая его толщину и уменьшая диэлектрическую проницаемость (рис. 60). Влиянию псверхностно активных веществ на структуру двойного слоя, кинетику [c.101]

    Теория Гуи — Чэпмена. Значительным шагом вперед явилась теория двойного электрического слоя с диффузным слоем противоионов, предложенная независимо друг от друга Гуи (1910 г.) и Чэпменом (1913 г.). Эта теория в значительной мере устранила недостатки теории Гельмгольца — Перрена. По теории Гуи —Чэпмена противоионы не могут быть сосредоточены только у межфазной поверхности и образовывать моноионный слой, а рассеяны в жидкой фазе на некотором расстоянии от границы раздела. Такая структура двойного слоя определяется, с одной стороны, электрическим полем у твердой фазы, стремящимся притянуть эквивалентное количество противоположно заряженных ионов возможно ближе к стенке, а с другой стороны, тепловым движением ионов, [c.176]


Библиография для Структура двойная: [c.600]    [c.612]    [c.209]   
Смотреть страницы где упоминается термин Структура двойная: [c.229]    [c.253]    [c.274]    [c.371]    [c.375]    [c.378]    [c.428]    [c.330]    [c.220]    [c.58]    [c.7]    [c.315]   
Нестехиометрические соединения (1971) -- [ c.417 ]




ПОИСК







© 2025 chem21.info Реклама на сайте