Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействие между ионами

    Дебаем и Онзагером предложена теория электрической проводимости растворов, представляющая собой развитие основных положений электростатической теории растворов (см. 156). По теории Дебая — Онзагера снижение эквивалентной электрической проводимости при переходе от бесконечно разбавленного раствора к растворам конечных концентраций связано с уменьшением скоростей движения ионов. Это объясняется появлением эффектов торможения движения ионов, возникающих за счет сил электростатического взаимодействия между ионом и его ионной атмосферой. [c.461]


    Это особенно актуально при рассмотрении вопроса о ионных парах и сольватных оболочках ионов.) Ионные растворы с измеримыми концентрациями существуют только благодаря тому, что взаимодействия между ионами и молекулами растворителя достаточно сильны, чтобы преодолеть взаимодействие между ионами. В противном случае соль была бы нерастворима. При рассмотрении ионных систем мы, таким образом, сталкиваемся с так называемыми силами, действующими на далеких расстояниях, т. е. между сильно взаимодействующими частицами. Чтобы оценить величину этих взаимодействий, подсчитаем их, исходя из чрезвычайно простых, но полезных электростатических моделей. Из электростатической теории следует, что сила взаимодействия между двумя точечными зарядами 218 и на расстоянии г в вакууме равна [c.444]

    Влияние ионной силы раствора на реакции взаимодействия между ионами [c.449]

    При конечной концентрации связь эквивалентной электропроводности с подвижностью несколько сложнее. Для слабого электролита (U+V)a. Если с повышением температуры подвижности ионов возрастают, то степень диссоциации может и уменьшаться, поскольку диэлектрическая проницаемость раствора при нагревании уменьшается, т. е. силы взаимодействия между ионами увеличиваются. Следовательно, кривая зависимости электропроводности от температуры может иметь максимум. [c.438]

    Если в уравнении Дебая — Хюккеля не ограничиваться первым членом, то можно показать [46], что взаимодействия между ионами могут приводить к такого рода результатам. [c.451]

    Силы взаимодействия между ионами отсутствуют, и растворы электролитов ведут себя подобно идеальным газовым системам. Это положение авторами теории электролитической диссоциации прямо не высказывалось, но оно ежит в основе всех ее количественных соотношений. [c.36]

    Для оценки взаимодействия между ионами в такой гипотетической системе первоначально рассчитывается наиболее вероятное распределение ионов вокруг любого данного центрального иона, а затем определяется энергия, которой может обладать система при таком распределении зарядов. [c.447]

    Метод Бьеррума содержит те же упрощения, что и модель Дебая— Хюккеля, в частности в отношении точных методов подсчета энергии пар ионов на малых расстояниях, когда, несомненно, большую роль играет молекулярная структура.. Тем не менее эта теория представляет значительный шаг вперед и дает удобную основу для оценки взаимодействий между ионами. Фуосс [51] рассмотрел вопрос о произвольном выбо ре критического расстояния г в и показал, что любое расстояние, на котором сила взаимодействия ионов составляет величину около 2кТ, дает аналогичные результаты. Фуосс совместно с Краусом применили описанную выше теорию к случаю диссоциации сильных электролитов в среде с меняющейся диэлектрической проницаемостью [52]. Было получено весьма хорошее совпадение теоретических расчетов и экспериментальных определений электропроводности. [c.453]


    Взаимодействие между ионом и нейтральной молекулой. [c.293]

    Однако представления о беспорядочном распределении ионов в растворе не соответствуют действительности, так как они основаны на игнорировании электростатического взаимодействия между ионами. Электрические силы проявляются на относительно больших расстояниях, и в сильных электролитах, где диссоциация велика, а концентрация ионов значительна и расстояния между ними невелики, электростатическое взаимодействие между ионами настолько сильно, что не может не сказываться на характере их распределения. Возникает тенденция к упорядоченному распределению, аналогичному распределению ионов в ионных кристаллах, где каждый ион окружен ионами противоположного знака. [c.393]

    Проводимое сравнение расчетных и экспериментальных данных по ЫС1 дает удовлетворительные результаты. Расчеты проводились для числа частиц Л ч = 32 и 48. Авторы отмечают, что расчет можно существенно уточнить, если ввести более реальный потенциал взаимодействия между ионами, например Ленарда — Джонса, и учитывать различие размеров ионов. Уравнение, связывающее коэффициент активности и осмотический коэффициент, дается в форме [c.25]

    Увеличение концентрации растворенных веществ приводит к повышению осмотического давления раствора, что снижает эффективную движущую силу процесса, а также, как правило, возрастанию вязкости. Все это вызывает снижение проницаемости. С увеличением концентрации уменьшается толщина слоя связанной воды на поверхности и в порах мембраны, ослабевают силы взаимодействия между ионами и молекулами воды в растворах неорганических веществ [159], что приводит к снижению селективности. [c.188]

    Выше уже отмечалось влияние гидратирующей способности ионов на их задержание мембраной. Поэтому в качестве основной характеристики природы электролита естественно выбрать энергию (теплоту) гидратации (АЯ) составляющих его ионов, которая характеризует степень взаимодействия между ионом и его гидратной оболочкой. [c.206]

    По формуле (2.13) можно приближенно оценить взаимодействие между ионами и соответствующей сольватной оболочкой, считая, что для соседних частиц = I. В случае воды при координационном числе 6 имеем U (Г) = 122 ккал/г-ион, что вполне сравнимо с теплотой химических реакций и дает основания рассматривать гидратированные ионы как комплексы. [c.34]

    Расчет растворимости указанных веществ в надкритическом водяном паре по уравнениям (11) и (16) приводит к большим ошибкам. Это объясняется существованием сильных взаимодействий между ионами и молекулами растворяющегося вещества и водяного пара. [c.14]

    Еще в более сильной степени происходят подобные взаимодействия между ионами и полярными молекулами (ионно-дипольная связь). Многие свойства растворов электролитов целиком зависят от такого взаимодействия молекул растворителя с находящимися в растворе ионами. В результате у иона образуется как бы оболочка из молекул растворителя ее называют сольватной или — в частном случае водных растворов — гидратной оболочкой ( 156). Подобные же взаимодействия играют роль в образовании кристаллогидратов различных солей или других соединений. В таких процессах большую роль играет и происходящая при этом взаимная поляризация частиц. [c.81]

    Процесс, протекающий при растворении вещества в воде. При птом в результате взаимодействия воды с веществом происходит разрушение ионной кристаллической решетки, полярные молекулы воды окружают катионы и анионы, уменьшая таким образом взаимодействие между ионами. [c.82]

    Все вышеизложенное и составило основу теории электролитической диссоциации Аррениуса. В ней не учитывается взаимодействие между ионами в растворе и между ионами растворенного вещества и растворителем. Поэтому в том виде, в котором излагал ее Аррениус, эта теория охватывала лишь крайне разбавленные растворы слабых электролитов. [c.168]

    Начала количественной теории сильных электролитов, разработанные Дебаем и Хюккелем (1923), имели целью отразить влияние этого электростатического взаимодействия между ионами на различные свойства раствора. Эта теория, учитывающая взаимодействие иона с окружающей его ионной атмосферой, дала возможность установить количественную связь между радиусом этой атмосферы и концентрацией электролита, определить скорость восстановления ионной атмосферы при перемещении иона (время релаксации— см. 168) и решить ряд других вопросов, важных для понимания процессов прохождения тока через раствор. Однако теория построена на ряде упрощающих допущений и до настоящего времени применима лишь к растворам с очень низкой концентрацией. [c.393]

    Особенность растворов электролитов обусловлена, во-первых, тем, что в них находятся заряженные частицы, во-вторых, тем, что эти частицы имеют заряд разного знака. Основная составляющая взаимодействий в таких растворах — это взаимодействие между ионами и молекулами растворителя. Ион оказывает значительное поляризующее влияние — индуцируемый им дипольный момент в молекулах растворителя соизмерим с дипольным моментом молекул даже такого полярного растворителя, каким является вода (поэтому введение в воду первых порций электролита вызывает особенно большое возмущающее действие). [c.168]


    В непосредственной близости от иона располагается структурированный растворитель. Число его частиц, находящихся в этом сольватном слое, называется координационным числом сольватации. Для большинства катионов оно равно 4, 6 или 8. При записи различных уравнений (электролитической диссоциации, взаимодействий между ионами) обычно координационная сфера ионов не указывается. [c.170]

    В растворах сильных электролитов, вследствие большей концентрации ионов по сравнению с растворами слабых электролитов той же концентрации, электростатическое взаимодействие между ионами приобретает относительно большее значение. [c.393]

    Термодинамические расчеты свойств растворов сильных электролитов строятся в настоящее время на использовании введенной Льюисом величины активности электролита или активности его ионов. Активность определяется как величина, подстановка которой вместо концентрации в термодинамические уравнения, действительные для простейших систем., делает их применимыми к рассматриваемым растворам ( 117). В растворах сильных электролитов в качестве стандартного принимают не чистое состояние данного вещества, а состояние раствора при полной диссоциации электролита и при отсутствии осложняющего взаимодействия между ионами его. [c.394]

    Магнитная и ультразвуковая обработки воды относятся к физическим методам борьбы с накипеобразованием. При магнитной обработке соленую воду пропускают через аппарат, в котором создается магнитное поле. Одно из возможных объяснений его действия — изменение электростатических сил взаимодействия между ионами и структурой раствора, в результате чего соли выпадают в виде шлама. Некоторые авторы считают, что магнитное поле влияет на [c.17]

    При повышении температуры степень дефектности кристаллов увеличивается и возрастает их электрическая проводимость. При плавлении ионных кристаллов количество неупорядоченных ионов (из-за больших размахов их тепловых колебаний, изменения силы взаимодействия между ионами) возрастает по сравнению с твердым состоянием. Поэтому многие ионные расплавы обладают хорошей электрической проводимостью, увеличивающейся при дальнейшем росте температуры  [c.465]

    Б растворах сильных электролитов, вследствие бол .шой концентрации ионов, важное значение имеет электростатическое взаимодействие между ионами. [c.94]

    В растворах, содержащих заряженные частицы, энергия взаимодействия между ионами убывает пропорционально Юг, где О — диэлектрическая проницаемость среды. Энергия взаимодействия между однозарядными ионами в водной среде при л = 5- 10- м (расстояние, равное среднему расстоянию между ионами в 1 М растворе) и 300 К равна 3,46 кДж/моль. Напряженность электрического поля между ионами равна 7,5 10 В/см. Энергия межмолекулярного взаимодействия, обусловленного ван-дер-ваальсовыми силами, на этих расстояниях практически равна нулю. Заряженные частицы взаимодействуют с нейтральными молекулами растворителя. Энергия такого взаимодействия характеризуется энергией сольватации ионов (см. 161). Энергия сольватации ионов соответствует по по- [c.601]

    С увеличением диэлектрической проницаемости взаимодействие между ионами ослабевает и они разделяются— диссоциируют. Если среда, в которой идет реакция, имеет высокую диэлектрическую постоянную, то ионы почти полностью разделены молекулами растворителя. Если растворитель имеет низкую диэлектрическую проницаемость, то в растворе присутствуют в основном контактные и частично сольватно разделенные ионные пары. С увеличением температуры диэлектрическая проницаемость уменьшается и доля ионов, не зависящих от противоиона, снижается, а доля ионов, находящихся в ионных парах, соответственно растет. Так как ионы в парах значительно менее активны, чем одиночные, повышение температуры может понизить скорость реакции в результате снижения концентрации одиночных ионов. [c.163]

    Электростатическая теория разбавленных растворов сильных электролитов, развитая Дебаем и Гюккелем в 1923 г., позволила теоретически вычислить средний коэффициент активности электролита, эквивалентную электропроводность сильных электролитов, а также теоретически обосновала правило ионной силы. При этом они сделали ряд предположений, справедливых только для предельно разбавленных растворов. Во-первых, они предположили, что единственной причиной, вызывающей отклонение свойств раствора электролита от идеального раствора, является электростатическое взаимодействие между ионами. Во-вторых, они не учитывали размеров ионов, т. е. рассматривали их как безразмерные точечные заряды. В-третьих, электростатическое взаимодействие между ионами они рассматривали как взаимодействие между ионом и его ионной атмосферой. Ионная атмосфера — это статистическое образование. [c.251]

    Эквивалентная электропроводность растворов электролитов зависит от двух факторов от степени диссоциации электролита и от электростатического взаимодействия между ионами. [c.258]

    Реакции МФК легко протекают в малополярных апротонных растворителях. Их диэлектрические проницаемости изменяются от 8,9 (дихлорметан), 4,7 (хлороформ) и 4,2 (диэтиловый эфир) до 2,3 (бензол) и 1,9 (гексан). Хотя растворимость обычных неорганических солей в этих растворителях пренебрежимо мала, органические четвертичные аммониевые, фосфоние-вые и другие ониевые соли, так же как и замаскированные органической оболочкой соли щелочных металлов, часто достаточно растворимы, особенно в дихлорметане и хлороформе. В этих растворителях концентрация свободных ионов незначительна и доминируют ионные пары. Вследствие слабого взаимодействия между ионными парами и молекулами растворителя реакция с электрофилами в органической фазе идет ыстро, и некоторые обычно слабые нуклеофилы (например, ацетат) оказываются сильными. Так, например, в гомогенных растворах в ацетонитриле относительная нуклеофильность солей тетраэтиламмония в реакции замещения с различными анионами от азида до фторида различается всего в 80 раз, причем фторид является наиболее сильным нуклеофилом среди галогенидов [127]. Различия в реакционной способности ионов в таких растворителях по сравнению с нормальным поведени- м в некоторых случаях бывают просто поразительными, и та- [c.18]

    Взаимодействие между ионами исчерпывается кулоновски-ми силами. Наложеи[1е электростатических сил теплового движения приводит к такому расиредел( иию ионов в растворе, для которого характерна статистиче- [c.90]

    При достаточно больших разбавлениях сила взаимодействия между ионами будет стремиться к нулю, и таким взаимодействием можно пренебречь. В сильно разбавленных растворах основное значение приобретает взаимодействие иопов с молекулами растворителя. При изменении состава или свойств растворителя будут изменяться коэффициенты активности, величины которых определяются взаимодействием ион — растворитель. С другой стороны, при больших разбавлениях изменение концентрации ионов будет приводить к изменению коэффициентов активности благодаря изменению сил взаилюдействия между ионами. В действительности изменение концентрации ионов (растворенного вещества) будет вызывать изменение свойств растворителя, но при достаточно больших разбавлениях эти эффекты будут пренебрежимо малы. Подобным же образом изменение растворителя будет влиять на взаимодействие ион — ион. [c.447]

    Простейшую модель, позволяющую представить взаимодействие между ионами, дает теория Дебая — Хюккеля [33, 34]. Предполагается, что растворитель может быть представлен в виде изотропной деструктурированной среды с диэлектрическо проницаемостью О, которая идентична с макро-молекулярной диэлектрической проницаемостью. Ионы рассматриваются как точечные заряды, заключенные в оболочку с фиксированным радиусом и с диэлектрической проницаемостью, равной 1. [c.447]

    В водных растворах мыл [СНд—(СНа) —СОО]"Ме+ или других органических соединений, имеющих характер солей (соли алкилсульфокислот, арилсульфокислот, кислых сложных эфиров серной кислоты, четвертичных аммонийных солей), происходит значительная диссоциация молекул. Функциональные группы, имеющие ионные заряды, гидратируются в значительно большей степени, а силы электростатитического взаимодействия между ионами с противоположными зарядами намного увеличивают их гидрофильный характер. [c.334]

    Для изучения взаимодействия между ионами Вг и 10 10 + Вг - ВгО + СГ при 298 К смешивали 100 мл 0,1 н. Na lO, 48 мл 0,5 н. NaOH и 21 мл дистиллированной воды. К смеси добаиляли 81 мл 1 %-ного раствора бромида калия. Через определенные промежутки времени t отбирали пробы и определяли в них содержание иона ВгО". Результаты анализов  [c.338]

    В этих условиях взаимодействие между ионами мало, абсолютная скорость движеггая ионов соответствует их предельным значениям  [c.98]

    В растворах сильных электролитов (даже в разбавленных растворах) электростатическое взаимодействие между ионами велико и их нужно рассматривать как неидеальные растворы и использовать метод активности. Так, сильный электролит Mv J,Av полностью диссоциирует на ионы  [c.245]


Смотреть страницы где упоминается термин Взаимодействие между ионами: [c.62]    [c.80]    [c.83]    [c.88]    [c.439]    [c.463]    [c.609]    [c.348]    [c.342]    [c.460]    [c.174]    [c.245]   
Смотреть главы в:

Ионный обмен  -> Взаимодействие между ионами

Ионный обмен  -> Взаимодействие между ионами

Введение в биофизическую химию -> Взаимодействие между ионами


Ионный обмен (1968) -- [ c.181 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействия ионные

Ионов взаимодействие



© 2025 chem21.info Реклама на сайте