Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Распределение на ионитах

    Распределение ионов в растворе по Аррениусу и по Гхошу [c.82]

    Для оценки взаимодействия между ионами в такой гипотетической системе первоначально рассчитывается наиболее вероятное распределение ионов вокруг любого данного центрального иона, а затем определяется энергия, которой может обладать система при таком распределении зарядов. [c.447]


    Однако представления о беспорядочном распределении ионов в растворе не соответствуют действительности, так как они основаны на игнорировании электростатического взаимодействия между ионами. Электрические силы проявляются на относительно больших расстояниях, и в сильных электролитах, где диссоциация велика, а концентрация ионов значительна и расстояния между ними невелики, электростатическое взаимодействие между ионами настолько сильно, что не может не сказываться на характере их распределения. Возникает тенденция к упорядоченному распределению, аналогичному распределению ионов в ионных кристаллах, где каждый ион окружен ионами противоположного знака. [c.393]

    Таким образом, распределение ионов будет определяться соотношением электростатической энергии и энергии хаотического движения ионов. Оказывается, что эти энергии сравнимы по величине, поэтому реальное распределение ионов в электролите является промежуточным между беспорядочным и упорядоченным. В этом заключается своеобразие, специфичность электролитов и трудности, возникающие при создании теории электролитов, так как прежде всего необходимо выяснить характер распределения ионов. [c.393]

    Рассмотрим статистическое распределение ионов в растворе с диэлектрической проницаемостью D вокруг какого-либо одного иона, который избран в качестве центрального. Пусть это будет катион с зарядом е. Вокруг этого иона имеется электрическое поле с шаровой симметрией. Потенциал поля в каждой точке есть функция расстояния г точки от центрального иона. [c.404]

    По мере прохождения тока градиент концентрации у катода увеличивается, и подача ионов из глубины раствора путем диффузии усиливается. Через некоторое время создаются такие условия, при которых количество ионов, исчезающих благодаря реакции, становится равным количеству ионов, которое подводится к поверхности электрода в результате диффузии. Устанавливается некоторое стационарное, т. е. не изменяющееся во времени, распределение ионов у катода. [c.609]

    Ионизационная изомерия связана с различным распределением ионов между внешней и внутренней сферами комплексного соеди- [c.118]

    Упрощающие допущения заключаются прежде всего в том, что в теории не отражаются процессы сольватации ионов. Вместо взаимодействия отдельных ионов рассматривается взаимодействие иона с окружающей его ионной атмосферой и определяется, как изменяется плотность заряда в ионной атмосфере с изменением расстояния от центрального иона. Расчет основывается на применении закона статистического распределения ионов в силовом поле, создаваемом центральным ионом. При этом для вычисления потенциала вместо зарядов отдельных ионов, составляющих ионную атмосферу, рассматривается соответствующее ей непрерывное электрическое поле. Плотность заряда в различных точках поля принимается пропорциональной избыточной концентрации ионов данного вида. Такая замена отдельных зарядов непрерывным полем дает возможность использовать более простые законы электростатики непрерывных сред, но искажает результат. [c.393]


    Электрическое поле, создаваемое зарядом металла в окружающем его растворе, вызывает неравномерное распределение ионов в растворе вблизи металла. Если металл заряжен отрицательно (рис. 146), то катионы, находящиеся в растворе вблизи него, притягиваясь металлом, концентрируются около него, в особенности в слое, непосредственно прилегающем к поверхности металла. Анионы же отталкиваются металлом, и их концентрация в растворе вблизи металла будет понижена, в особенности в слое, непосредственно прилегающем к поверхности металла. В результате раствор вблизи металла приобретает заряд, противоположный по знаку заряду металла. Образуется двойной электрический слой. Этот слой характеризуется различным распределением ионов разного знака в поверхностном слое раствора и неодинаковым распределением зарядов в поверхностном слое металла. Он связан с определенной разностью потенциалов (скачком потенциала) на поверхности раздела металл/раствор .  [c.416]

    Коэффициенты распределения ионов в ионообменной хроматографии.  [c.5]

    КОЭФФИЦИЕНТЫ РАСПРЕДЕЛЕНИЯ ИОНОВ В ИОНООБМЕННОЙ ХРОМАТОГРАФИИ [c.176]

    Н коэффициенты распределения ионов Н и М" " между [c.51]

    При добавлении соли одного металла к раствору соли другого изменяется также состав или строение двойного электрического слоя. При этом концентрация каждого вида ионов уменьшается вследствие вытеснения одних ионов другими. В соответствии с новым установившимся распределением ионов в двойном слое изменится величина поляризации и, следовательно, скорость разряда каждого вида ионов. Однако учет этого фактора важен главным образом для сильно разбавленных растворов, которые в практике почти не применяются. [c.435]

    В смесях расплавленных солей ионы одного знака могут иметь разные заряды, размеры и поляризуемость. Энергетическая неравноценность ионов одинакового знака приводит к появлению в расплаве группировок ионов, благодаря чему возникает определенная упорядоченностью распределении ионов. Ионы с особенно большим зарядом, т. е. большой поляризующей силы (например, А1 +), влияют на ионы меньшего заряда как комплексообразователи и группируют их вокруг себя. Связь ионов внутри группировки и между отдельными группировками может быть различной. [c.466]

    Количественное определение ионов после хроматографического разделения на бумаге можно проводить несколькими методами 1) извлечением из пятен отдельных компонентов после разделения смеси и количественное их определение обычными микроаналитическими методами 2) измерением площади пятен на хроматограммах. Площадь 5 пятна на хроматограмме является функцией концентрации С компонента в анализируемой пробе 8 = a g + В, где а и й — постоянные, определяемые экспериментально. Однако первый метод трудоемкий, а при использовании второго приведенная зависимость площади пятна от логарифма концентрации соблюдается не строго и для получения более или менее надежных результатов необходимо проводить много параллельных определений. Одной из причин разброса результатов анализа является то, что при хроматографировании разделение происходит по нескольким механизмам протекающим одновременно — распределение ионов между двумя растворителями, ионный обмен, образование малорастворимых осадков, физическая адсорбция на бумаге. [c.341]

    Таким образом, органические красители — это ионы, которые содержат цепь сопряженных двойных связей и, по крайней мере, — два ауксохрома, между которыми распределен ионный заряд. [c.307]

    Разность потенциалов у поверхности стекло — раствор возникает вследствие неодинакового распределения ионов между стеклом и раствором. Скачок потенциала у этой поверхности равен  [c.160]

    Очевидно, что, несмотря на равномерное распределение ионов по объему раствора, вблизи положительных зарядов плотность отрицательных зарядов выше, чем в среднем по раствору, и, аналогично, вблизи отрицательных зарядов плотность положительных зарядов больше. Это означает, что потенциал электрического поля иона в растворе конечной концентрации отличается от потенциала иона в бесконечно разбавленном растворе и зависит от общей концентрации электролита. Поэтому наша первая задача заключается в вычислении электростатического потенциала отдельного иона в зависимости от расстояния до его центра. Хотя распределение зарядов вокруг любого иона в каждый момент времени не является сферическим, тем не менее если усреднить эти распределения по всем ионам одного типа в растворе, получится сферическая картина. Для нахождения усредненного потенциала необходимо решить сферически симметричное уравнение Пуассона  [c.230]

    Изменение толщины ДЭС при добавлении электролита к раствору объясняется тем, что при этом в растворе изменяется соотношение между влиянием электростатического притяжения и диффузии, определяющими распределение ионов в наружной обкладке двойного слоя (рис. 36)  [c.67]


    Описание кинетики любого физико-химического процесса, приводящего к резкому изменению характера температурной зависимости изучаемой величины, может быть проведено с использованием уравнений реакций первого или второго порядка. Исходя из того, что распределение образующихся в облученном полимере ионов неравномерно, можно считать, что процесс излучательной рекомбинации подчиняется не бимолекулярному уравнению (как это имеет место при однородном распределении ионов), а мономо-лекулярному уравнению реакции. Если ионы в облученном полимере распределены равномерно, то скорость изменения концентрации N связанных зарядов одного знака при рекомбинации, согласно теории бимолекулярной кинетики, [c.239]

    ИОН, расположенный в начале координат, заряжен положительно, то элемент объема с1У будет обладать избыточным отрицательным зарядом. Предполагая, что к распределению ионов в растворе применим иринцин Больцмана и что силы, действующие между ионами, по своей природе электростатические, число отрицательных ионов в элементарном объеме с1У можно выразить как [c.85]

    Распределение ионов вокруг любого центрального иона подчиняется классической статистике Максвелла — Больцмана. Физически неясно, насколько классическая статистика может быть приложима к совокупности иоиов. Фактически в теории Дебая — Гюккеля используется распределение гпк го типа, отличное от Больц-мановского. В ией иосле разложения показательной функции в ряд отбрасываются все члены разложения, кроме первого (для несимметричных электролитов) или кроме первых двух (для симметричных электролитов). Эта функция растределения может быть записана как [c.89]

    Пусть г(3г(г) есть потенциал раствора на расстоянии г от центрального иона г, обладающего зарядом ге, где е — единица атомного заряда (4,80 X X 10 ЭЛ. ст.ед.), 2г—целое число. Предполагается, что г1 г(/-) обладает сферической симметрией. В таком случае о1 г(7-) можно разделить на две составляющие, из которых одна — поле кулоновского взаимодействия, образованное центральным ионом, и вторая — некоторая дополнительная величина 113а. ( ), обусловленная распределением ионов в растворе вокруг центрального иона г. Потенциалы фа.( ) и г з1(т ) должны удовлетворять уравнению Пуассона в любой точке г раствора, р=5(/-) —плотность заряда в точке г. Для сферически симметричного потенциала это выражение может быть записано в виде [c.447]

    В теории электролитов очень важным является вопрос о распределении ионов в растворе. По первоначальной теории электролитической диссоциации, основанной на физической теории растворов Вант-Гоффа, считалось, что ионы в растворвх находятся в состоянии беспорядочного движения, следовательно в состоянии, аналогичном газообразному. Этим обстоятельством объяснялась возможность применения законов для газообразного состояния к электролитам. [c.393]

    Для статистической теории электролитов исходным является следующее положение ионы распределены в объеме раствора (в каждый данный момент) не хаотически, а в соответствии сзаконом кулоновского взаимодействия их. Из этого положения методом статистической физики найдено распределение ионов различных знаков вокруг каждого отдельного иона. Таким образом, открыто существование ионной атмосферы ионного облака), имеющейся вокруг каждого иона и состоящей из ионов противоположного центральному иону знака. Это статистически неравномерное распределение в пространстве электрических зарядов разных [c.403]

    На рис. XVII, 7 изображена схема движения ионов (переноса электричества) в растворе соляной кислоты при электролизе. Разделим мысленно ванну с электролитом на три отделения I — анодная часть (анолит) П — центральная часть III —катодная часть (католит). В процессе электролиза в отделении II концентрация электролита не изменяется, в отделениях I и III — изменяется. В верхней части чертежа А (см, рис. XVII, 7) схематически изображено распределение ионов растворенного- вещества. До электролиза концентрация раствора во всех отделениях одинакова на рисунке показано, что в каждом из отделений нахо- [c.446]

    Жидкостные электроды. В жидкостных ионселективных электродах возникновение потенциала на границе раздела фаз обусловлено ионным обменом, связанным с различием констант распределения иона между жидкой и органической фазами. Ионная селективность достигается за счет различия в константах распределения, устойчивости комплексов и различной подвижности определяемого и мешающего ионов в фазе мембраны. В качестве электродноактивного соединения в жидкостных ионселективных электродах могут быть использованы хелаты металлов, ионные ассоциаты органических и металлосодержащих катионов ц анионов, комплексы с нейтральными переносчиками. Большое распространение получили пленочные пластифицированные электроды, выпускаемые промышленностью и имеющие соответствующую маркировку, например, ЭМ—СЮ4 01, ЭМ—НОз —01. Чувствительный элемент таких электродов состоит из электродноактивного компонента, поливинилхлорида и растворителя (пластификатора). В лабораторной практике используют аннонселективные электроды, для которых электродноактивным соел,инением являются соли четвертичных аммониевых оснований. [c.121]

    В ВЭЖХ могут быть реализованы почти все механизмы разделения, применяемые в хроматографии (адсорбция, распределение, ионный обмен и др.). Независимо от механизма разделения, подвижная фаза в ВЭЖХ — жидкость. Остановимся на жидкостно-адсорбционной хроматографии, которая широко представлена в двух вариантах нормально-фазовая (НФХ) и обращенно-фазовая (ОФХ) — в зависимости от полярности подвижной и неподвижной фаз. [c.203]

    Если мысленно выделим в разбавленном растворе сильного электролита один центральный ион (например, катион), то ионы противоположного знака (анионы) будут чаще наблюдаться около него, чем ионы с одноименным зарядом. Такое статистическое распределение ионов вокруг выбранного центрального иона устанавливается под влиянием двух факторов 1) электростатических сил притяжения и отталкивания, которые стремятся расположить ионы упорядоченно, как в кристаллической решетке, и 2) теплового движения ионов, под влиянием которого ионы стремятся расположиться хаотически. В результате вокруг центрального иона устанавливается некоторсе промежуточное статистическое распределение ионов, так называемая ионная атмосфера. При этом около центрального иона в среднем во времени будет некоторая избыточная плотность зарядов противоположного знака, которая по мере удаления от центрального иона убывает и на бесконечно большом расстоянии стремится к нулю. Фактически уже на расстоянии нескольких ангстрем от иона величина этого избыточного заряда становится очень малой и может практически считаться равной нулю. [c.251]

    В настоящее время существуют следующие представления о строении двойного слоя. Соприкосновение двух фаз, как указывалось, приводит к возникновению противоположных зарядов на границах раздела фаз. Ионы и молекулы л идкой фазы, находящиеся в непосредственной близости от поверхности твердой фазы, испытывая действие больших электростатических сил, образуют адсорбционный слой. На ионы вне этого слоя действуют противоположно направленные силы с одной стороны — силы молекулярного теплового движения, которые стремятся распределить их равномерно, с другой стороны — силы электростатического поля зарядов, представляющего разность между поверхностной плотностью зарядов твердой фазы и плотностью зарядов адсорбционного слоя. В результате концентрация ионов по мере удаления от границы адсорбционного слоя уменьшается по статистическому закону Больцмана аналогично распределению газовых молекул в поле сил тяжести. Слой с рассеянным распределением. ионов называется диффузным. [c.112]

    До сих пор мы предполагали, что коллоид не является электролитом, а это действительно верно для растворов макромолекул в неполярных растворителях. Однако в водных растворах многие макромолекулы, и прежде всего различные биоколлоиды, как правило, находятся в виде ионов. Если же раствор, кроме того, содержит обычные электролиты, то картина еще более усложняется. Здесь осмотическое равновесие сочетается с электростатическими взаимодействиями. Макроионы, которые не проходят через поры мембраны, частично удерживают около себя противоионы и нарушают их равномерное распределение возникает так называемый мембранный потенциал (играющий важную роль в процессах обмена живой клетки). Электростатически обусловленная повышенная концентрация ионов с одной стороны мембраны является причиной более высокого осмотического давления. Добавка электролита экранирует мембранный потенциал (эффект сжатия противоионной атмосферы), а тепловое движение понижает неравномерное распределение ионов, и осмотическое давление понижается. Предельный случай полностью подавленного мембранного потенциала (равномерное распределение всех ионов около мембраны) соответствует осмотическому давлению раствора неэлектролита той же концентрации. Теорию этого эффекта предложил Доннан (1911г.). Допустим, что слева от мембраны находится раствор полиэлектролита N31 с концентрацией с , а справа — раствор обычного электролита, например ЫаС1, с концентрацией с . Мембрана свободно пропускает молекулы растворителя (воды), ионы Ыа+ и С1 , но не пропускает ионы Для простоты вслед за Доннаном примем, что объемы растворов, находящихся с обеих сторон мембраны, одинаковы. Это делает вывод наглядным, не лишая его общности. Предположим также, что оба электролита полностью диссоциированы. Когда в системе установится равновесие, в ту часть раствора, где находится ЫаК, перейдет х молей ЫаС1, так что концентрация N3+ в нем повысится до - + х, концентрация К останется, как и прежде, равной с , а концентрация С1 , которая вначале была равна нулю, составит х. По другую сторону мембраны концентра- [c.45]


Смотреть страницы где упоминается термин Распределение на ионитах: [c.178]    [c.227]    [c.593]    [c.89]    [c.439]    [c.94]    [c.301]    [c.51]    [c.52]    [c.348]    [c.68]    [c.19]    [c.146]    [c.47]    [c.108]    [c.12]   
Органические реагенты в неорганическом анализе (1979) -- [ c.172 ]




ПОИСК





Смотрите так же термины и статьи:

Бондаренко. О распределении по энергиям каналовых ионов в тлеющем разряде с плоским и полым катодами

Влияние многовалентных ионов и концентрации микрокомпонента на распределение изодиморфного вещества между раствором и осадком макрокомпонента

Влияние неоднородности ионита на распределение необменно-поглощенного электролита между ионитом и раствором

Гемоглобины распределение ионных групп

Герасимов, Л. Ф. Яхонтова, Б. П. Брунс. Распределение красителей внутри зерен карбоксильных катионитов при различных условиях ионного обмена

Гидратация контроль распределения ионо

Двойной электрический слой распределение ионов

Дифенилметан, карбанион, ионная пара с распределение заряд

Закон распределения ионов

Ионная полимеризация молекулярно-весовое распределение

Ионные ассоциаты распределение

Ионные функция распределения

Ионы коэфициент распределения

Ионы распределение

Ионы статистическое распределение

Ионы-модификаторы изотермы распределения

Калибровка шкалы энергии электронов, распределение электронов по энергиям при масс-спектрометрическом изучении отрицательных ионов

Коэффициент распределения в ионном обмене

Коэффициент распределения ионов

Коэффициент распределения. Избирательность и специфичность ионита. Коэффициенты разделения и равновесия. Кажущаяся константа обмена

Коэффициенты распределения ионов в ионообменной хроматографии

Марголина, А. Г. Бунтарь. Эффективные заряды ионов и распределение потенциала во фтористом калии

Методы определения валентных состояний ионов и их распределения в ферритах

Молекулярно-весовое распределение полимеров, образующихся в ионных системах

Необменная сорбция электролита ионитом как распределение Доннана

ОСОБЫЕ СЛУЧАИ РАВНОВЕСИЙ, ХАРАКТЕРИЗУЮЩИЕСЯ НЕПОЛНОТОЙ РАСПРЕДЕЛЕНИЯ КОМПОНЕНТОВ. РАВНОВЕСИЯ В ИОННЫХ СИСТЕМАХ

Образование и устойчивость коллоидных систем О распределении водородных ионов между желатиной и водой

Определение относительной сорбционной способности ионов и их коэффициентов распределения

Память и распределение ионных каналов

Полярография карбониевых ионов распределение заряда и химический сдвиг

Потенциал действия, трансмембранное распределение ионов

Прогнозирование условий разделения смесей ионов по коэффициентам распределения

РАСПРЕДЕЛЕНИЕ ЭЛЕКТРОННОЙ ПЛОТНОСТИ В МОЛЕКУЛАХ И ИОНАХ Поляризация заряда в молекулах

Равновесные распределения ионов

Равновесные распределения ионов слабые кислоты и слабые основания

Радиальное распределение ионов

Распределение Np между раствором и ионитом

Распределение Больцмана ионов

Распределение гидрофильных ионов в мицеллярных растворах

Распределение заряда в карбониевых ионах

Распределение ионе рубидия

Распределение ионных каналов в мембране мышечной слетки изменяется в ответ ва денервацию

Распределение ионов

Распределение ионов в разбавленных растворах сильных электролитов

Распределение ионов в растворе

Распределение ионов в растворе по Аррениусу и Гхошу

Распределение ионов в растворе электролита и потенциал ионной атмосфе. 3. Теория Дебая — Гюккеля и коэффициенты активности

Распределение ионов ванадила в замороженных водных растворах

Распределение ионов вокруг факела

Распределение ионов двухвалентных металлов между монофункциональной иминодиуксусной смолой и раствором нитрилотриуксусной кислоты

Распределение ионов ионов

Распределение ионов между двумя фазами

Распределение ионов между раствором и осадком

Распределение ионов металла в фазе ионита

Распределение ионов молекул растворителя вокруг

Распределение комплексообразующих ионов металлов между смолой дауэкс А-1 и находящимися в растворе комплексообразователями

Распределение комплексообразующих ионов металлов между хелоновыми смолами и находящимися в растворе комплексообразователями

Распределение металла при совместном разряде ионов

Распределение молекулярном ионе водорода

Распределение по скоростям ионов

Распределение при ионном обмене

Распределение при ионном обмене растворителя

Распределение раствор ионит

Распределение спиновой плотности в ионах альтернантных углеводородов

Распределение энергии электронов и ионов

Сезонное распределение ионного стока рек СССР

Скорости движения ионов молекул распределение

Слабые кислоты равновесное распределение ионов

Статистическое распределение ионов

Устойчивость карбониевых ионов. Распределение заряда

Ч у й к о. Распределение фосфора между металлом и шлаком с учетом ионных и ковалентных связей в соединениях шлака

Шпинели распределения ионов

Этиленгликоль распределение ионов

водой распределение электронов в молекулах и ионах



© 2024 chem21.info Реклама на сайте