Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Классическая теория

    В химии твердых тел, металлов и растворов, а также в гетерогенном катализе всо большую популярность в последнее время начинает завоевывать концепция Н.С, Курнакова о соединениях постоянного и переменного (стехио— и нестехиометри— ческого) состава, названных им соответственно дальтонидами и бертоллидами. По его представлениям, бертоллиды — это своеобразные химические соединения перемен— ного состава, формой существования которых является не молекула, а фаза, то есть химически связанный огромный агрегат атомов. Классическая теория валентности не применима для соединений бертоллидного типа, поскольку они характеризуются переменной валентностью, изменяющейся непрерывно, а не дискретно, Перечисле — [c.160]


    Уравнение Аррениуса Классическая теория [c.224]

    Рост эквивалентной электрической проводимости с увеличением разведения (см. рис. 166) для слабых электролитов может быть объяснен на основе представлений классической теории электролитической диссоциации, согласно которой с увеличением разведения степень диссоциации элетролита возрастает и в пределе стремится к 1. Для сильных электролитов, диссоциирующих полностью. [c.460]

    Приведенные выше выводы, основанные на классической теории ошибок, справедливы только тогда, когда число определений очень велико (п- -оо). На практике при анализе всегда имеют дело с небольшим (конечным) числом определений, так, что классическая теория ошибок здесь неприменима. Поэтому при учете влияния случайных ошибок на результаты анализа приходится пользовать- ся новейшими методами математической статистики, разработанными для не- [c.54]

    Метод подхода к основам химической технологии через рассмотрение работы отдельных установок в настоящее время в основном не практикуется в связи с переходом к более обобщенному направлению, в котором теория явлений переноса рассматривается в общем виде. В пределах этого направления могут быть рассмотрены многие классические теории химической технологии. Долгое время явления массопереноса в условиях протекания химической реакции, которые имеют огромное значение в широком многообразии химических процессов, практически не использовались. В последние пятнадцать лет в литературе появились важные работы по общему представлению одновременных процессов массопереноса и химической реакции. Сюда можно отнести теоретические и экспериментальные работы в таких промышленно важных областях, как химическая абсорбция, гетерогенный катализ, продольное перемешивание в химических реакторах и др. [c.7]

    В качестве определяющего критерия А можно использовать различные величины. Часто определяющим критерием служит коэффициент сжимаемости газа в критической точке 2с —см. уравнение (1У-48). В среднем,- в случае применимости классической теории соответственных состояний, 2с = 0,27. [c.97]

    Что касается классической теории [см. уравнение (XI.8.2)], то фактор частоты V в принципе вычисляется из спектроскопических частот нормальной молекулы и должен иметь значение от 10 до 10 сек . Частотный фактор [c.225]

    При больших к главный вклад в (9.41) дает второй член, соответствующий классической теории Гуи-Чепмена. [c.165]

    Из классической теории мономолекулярных реакций (см. разд. XI.4) видно, что ку может быть выражена как [c.350]


    Таким образом, очень важным становится вопрос распространения теории соответственных состояний на различные классы подобных веществ. По классической теории соответственных состояний, коэффициент сжимаемости в критической точке [c.97]

    По классической теории Аррениуса при т0,01 - 0,1 степень диссоциации сильных электролитов а = 0,75- 0,95. Вычисляемые отсюда константы диссоциации резко изменяются с концентрацией, т. е. не являются константами. Степень диссоциации, вычисленная по электропроводности, существенно отличается от найденной для концентрированных электролитов по уравнению (XVI, 6). Имеются и другие факты, указывающие на то, что степень диссоциации сильных электролитов значительно выше вычисляемой по теории Аррениуса. Так, каталитическое действие ионов гидроксония (Н3О+) в сильных электролитах изменяется пропорционально общей концентрации растворенного вещества, что указывает на независимость степени диссоциации от концентрации. [c.394]

    Классическая теория теплоемкости твердых тел приводит к выводу, что Су = 3R для простых твердых тел. Уточненная квантовая теория теплоемкости была построена Дебаем и Эйнштейном [15]. [c.27]

    Если использовать классическую теорию соответственных состояний, то Ос = 7. [c.97]

    По рис. IV-15 находим значение коэффициента сжимаемости для случая, когда можно использовать классическую теорию соответственных состояний 2о = 0,675. Поправка г будет равна 0,16 (рис. 1У-21). Применяя уравнение (1У-53), получаем  [c.99]

    О доструктурных теориях органической химии (теории радикалов, теории втерина, теории замещения Дюма, старой теории типов Дюма и новой теории типов Ш. Ф. Жерара см. Быков Г. В. История классической теории химического строения.— М. Изд-во АН СССР, 1960, 311 с. О вкладе Шарля Фредерика Жерара (1816—1856) в развитие теоретической органической химии см. Фаерштейн М. Г. Шарль Жерар.— М. Наука, 1968, 163 с. [c.183]

    Еще Оствальд заметил, что для этой и аналогичных реак-ций между каталитической активностью системы и ее электропроводностью имеется однозначная связь. Аррениус подтвердил это и, кроме того, обнаружил, что во-первых, при добавлении к катализирующей реакцию кислоте ее соли, что согласно классической теории электролитической диссоциации должно умень-шить концентрацию ионов водорода, каталитический эффект не только не уменьшается, но в некоторых случаях даже возрастает (например, при этерификации трихлоруксусной кислоты). З то явление получило название вторичного солевого эффекта. Так как при добавлении к раствору кислоты ее соли увеличивается концентрация анионов и недиссоциированной кислоты, то из наличия солевого эффекта следует, что и недис-социированная кислота, и ее анионы обладают каталитической активностью. [c.287]

    По классической теории вычисляется приближенная величина [c.467]

    Существенно, что, варьируя ионный состав электролита, мол<-но менять толщину приповерхностного слоя. Например, ионы Са + способны вытеснять воду из области полярных головок и тем самым сжимать приповерхностный слой [430]. Обычно толщиной этого слоя пренебрегают и считают, что все поверхностные источники электрических полей строго локализованы на границе раздела бислой/липид, а сама эта граница считается геометрической плоскостью. Такое допущение позволяет проводить теоретический анализ электрических явлений на основе классической теории Гуи — Чепмена [431], в рамках которой структура двойного электрического слоя (ДЭС) определяется лишь поверхностными зарядами. При этом оказывается, что поверхностные электрические диполи, если они присутствуют в системе, не влияют на эту структуру. Существует целый ряд проблем, для которых предположение о локализации источников электрических полей строго на границе раздела является слишком грубым. Оказалось, что трехмерность распределения поверхностных электрических зарядов заметно влияет на элект- [c.150]

    Значительное влияние ГС на устойчивость коллоидов обсуждалось в ряде работ. Так, обнаруженную аномальную , не объясняющуюся классической теорией ДЛФО, устойчивость золя арахиновой кислоты [504] и октадеканола [505] авторы свя- [c.173]

    В целом для приближенных оценок можно с успехом использовать значение коэффициента скорости диссоциации, классической теорией соударений  [c.265]

    Для того чтобы устранить несоответствие между классической теорией массопередачи и экспериментальными данными, необходимо, во-первых, учитывать теплообмен между фазами. Многими исследователями отмечается наличие максимума ко- [c.137]

    Это, в частности, следует из совпадения вычисленных на основании классической теории и измеренных значений скорости детонации в смесях На— Оа— 2 (см. [66, табл. 61]). [c.242]

    По меньшей мере две формулы необходимы в классической теории для описания того выравнивания связей, которое еще сам Кекуле пытался объяснить осцилляцией двойных связей в кольце  [c.115]

    Широко используются для исследования структуры молекул и спектры комбинационного рассеяния (КР-спектры). Если через прозрачное вещество в кювете пропускать параллельный пучок света, то некоторая его часть рассеивается во всех направлениях. Если источник света монохроматический с частотой V, то в спектре рассеяния обнаруживается частота ч, равная частоте V. Этот результат вытекает как из квантовой, так и из классической теории рассеяния. Рассеяние без изменения частоты и соответственно без изменения энергии молекулы называют классическим, релеевским (по имени физика [c.145]


    В классической теории электролитической диссоциации Аррениуса важной характеристикой диссоциации электролита является константа диссоциации, выражаемая через равновесные концентрации ионов и молекул. Так, например, соотношение для константы диссоциации уксусной кислоты имеет вид [c.430]

    В то же время известно, что в 1юдиом ])астворе хлорида иатрия величина а близка к единице, т. е. почти каждая его молекула распадается на свободные ионы. При растворении должно В1=1деляться поэтому количество энергии, достаточное для разрыва связей между ионами в молекуле. Однако ии источник, ии природа этой дополнительной энергии не рассматриваются классической теорией электролитической диссоциации. [c.46]

    Уже первые расчеты скорости детонации, выполненные по классической теории, показали хорошую сходимость вычисленных и экспериментально определенных значений ив. Этот результат свидетельствует о справедливости представлений опри- [c.141]

    В одной из первых теорий электрэпроводности растворов электролитов— Б гидродинамической, или классической, теории — прохождение тока рассматривалось как движение жестких заряженных шаров-ионов под действием градиента электрического потенциала в непрерывной жидкой вязкой среде (растворителе), обладающей определенной диэлектрической проницаемостью. Конечно, ионы перемещаются и в отсутствие электрического поля, но это беспорядочное тепловое движение, результирующая скорость которого равна нулю. Только после наложения внешнего электрического поля возникает упорядоченное движение положительных (по направлению поля) и отрицательных (в противоположном направлении) ионов, лежащее в основе переноса тока. Скорость такого направленного движения ионов определяется электрической силой и силой трения. В начальный момент на ион действует только первая сила, представляющая собой произведение заряда иона qi на градиент потенциала grad ijj  [c.118]

    При разбавлении степень диссоц[1ации электролита растет, приближаясь к единице, и молярная электропроводность также должна стремиться к некоторому пределу, равному Яо. Таким образом, общий ход кривой молярная электро-ир( водноеть — концентрация (Л — с можно качествено истолковать с позиций классической теории. Из за-ко а разведения Оствальда [c.124]

    Осмотическая теория э.д.с. Нернста основана на классической теории электролитической диссоциации, поэтому она сохраняет основной недостаток теории Аррениуса — отождествление свойств растворов электролитов со свойствами идеальных систем. Развитие теории э.д.с. и электродного потсчщиала повторило ход развития теории растворов электролитов. Так, введение понятий о коэффи-цисн1е активности (как о величине, связанной с межионным взаимодействием) и об активности (как эффективной концентрации), явившееся крупным шагом вперед в развитии теории растворов, позволило получить на основе теории Нернста качественно верную зависимость электродного потенциала от состава раствора. Учет взаимодействия между растворенным веществом и растворителем, на необходимости которого настаивал Д. И. Менделеев, и в особенности учет возможности образования в растворах гидратированных или сольватированных ионов (А. И. Каблуков) были важными вехами в развитии теории раство зов электролитов. Они позволили найти причину диссоциации электролитов на ионы. Ионная сольватация должна играть существенную роль и в процессе установления равновесия между электродо и раствором. [c.220]

    Эти факты явно противоречат положениям классической теории электролитической диссоциации, которая,следовательно, применима лищь к слабым электролитам. [c.395]

    Итак, структура ДЭС вблизи фосфолипидной поверхности может существенно отличаться от предсказаний классической теории Гуи — Чепмена. Эти отличия связаны с двумя особенностями водно-липидных систем. Во-первых, водный электролит является нелокально поляризующейся средой и, во-вторых, поверхностные источники электрических полей (заряды и диполи) распределены в прииоверхностном слое. Влияние этих особенностей на структуру ДЭС приводит к тому, что распределение потенциала вблизи фосфолипидной поверхности становится немонотонным, знакопеременным. [c.160]

    Пути построения более совершенной теории детонации в настоящее время только еще намечаются [539]. Однако во многих случаях классическая детонационная волна Чепмена—Жуге оказывается в достаточной мере адекватной наблюдаемым фактам, что имеет место при оперировании средними величинами (благодаря чему остается правильной теория скорости детонации и ряд других положений классической теории) [c.242]

    Для выяснения влияния природы иона электролита на устойчивость дисперсии алмаза в растворах ЫС1, СзС1 и ВаСЬ в широком интервале pH (2—9) и концентраций (10 — 5-10 моль/л для ЫС1 и СзС1 и 5-10 =—5-10 моль/л для ВаСЬ) получены зависимости обратной счетной концентрации частиц 1//г от времени t. Влияние исследованных катионов на коагуляцию дисперсии алмаза различно. При концентрации выше 1-10 2 моль/л значения -потенциала алмаза в растворах ЫС1, КС1 и СзС1 существенно не различаются. Следовательно, и результаты теоретических расчетов энергии взаимодействия частиц на основании классической теории ДЛФО, и ожидаемые степени агрегации должны быть близки. Наблюдаемое в эксперименте существенное различие в агрегативной устойчивости в растворах хлоридов щелочных металлов может быть объяснено с привлечением представлений о ГС и влиянии их структуры и протяженности на агрегативную устойчивость исследованных систем. [c.185]

    Классическая теория кислот и оснований оказалась недостаточной для более общего случая. Сначала получила широкое распространение обобщенная теория кислот и оснований, разработанная (1932) Бренстедом. Позднее в работах А. И. Шатенштейна, М. И. Усановича, Льюиса и др. и в последнее время в работах Н. А. Измайлова теория кислот и оснований получила дальнейшее развитие. Теория, разработанная Н. А. Измайловым, основывается на представлении, что молекулы кислот, оснований и солей диссоциируют под влиянием сольватации их молекулами растворителя. [c.413]

    Согласно классической теории электрохимическо11 кор основное отличие данного механизма разрушения метал химического состоит в том, что коррозионный процесс во, [c.17]

    Изложенная классическая теория детонации была создана Зельдовичем 144, 45, 47] в 1940 г. (см. также работы [36, 255, 432]) на основе одномерной модели устойчивой детонационной волны. Позднейшие исследования показали (литературу см. в обзоре Стрелова [539]), что действительная газокинетическая и химико-кинетическая картина детонационной волны гораздо сложнее той идеализированной картины плоской ударной волны и плоского фронта химической реакции, которая слодует из классической теории и которая к тому же оказывается неустойчивой, что приводит к изломам и искривлениям волнового фронта и связанным с этим нарушениям идеальной картины детонационных волн. [c.242]

    При электрохимической коррозии в отличив от химической имеет место перенос электрических зарядов. Согласно классической теории электрохимической корроаии коррозионный процесс возникает в результате работы множества короткозамкнутых гальванических элементов (рис.9) образуввдхся вследствие неоднородное- [c.25]

    Ароматические соединения и полиень — два обширных класса веш,еств, для которых описание только через локализованные МО невозможно. В классической теории строения в свою очередь их описание с помощью единственной структурной формулы также невозможно. Подход метода МОХ к этим системам рассмотрим на примере ароматических соединений, в первую очередь бензола. [c.114]

    Непостоянство констант диссоциации, которое наблюдалось у многих слабых электролитов уже в области умеренных концентраций, также связано с проявлением этих взаимодействий и, в частности, сил межионного взаимодействия, не предусмотренного и неучитываемого классической теорией электролитической диссоциации. С увеличением концентрации электролита количество ионов в растворе увеличивается и ин-Еенсивность их взаимодействия между собой и с растворителем возрастает, что вызывает изменение константы диссоциации и ряда других эффектов (эффекты неидеальности). Отклонения от идеальности количественно учитывают с помощью коэффициентов активности 7 (см. с. 365). Поэтому классическую константу диссоциации слабого электролита [см. уравнение (152.4)] следует заменить на истинную термодинамическую константу диссоциации К°, выраженную через активности участников процесса  [c.432]


Библиография для Классическая теория: [c.663]   
Смотреть страницы где упоминается термин Классическая теория: [c.55]    [c.235]    [c.124]    [c.132]    [c.41]    [c.167]    [c.333]    [c.278]    [c.30]    [c.27]   
Смотреть главы в:

Теоретическая электрохимия -> Классическая теория

Теоретическая электрохимия Издание 3 -> Классическая теория

Квантовая механика молекул -> Классическая теория

Строение молекул -> Классическая теория

Строение молекул -> Классическая теория

Строение молекул -> Классическая теория




ПОИСК





Смотрите так же термины и статьи:

Классические



© 2025 chem21.info Реклама на сайте