Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Состояние изоэлектрическое

    При некотором (определенном для каждого белка) значении pH среды степень диссоциации макромолекул по кислотному и основному типам становится одинаковой, из-за чего макромолекулы белка становятся нейтральными (положительные заряды одних их ионогенных групп полностью нейтрализуются отрицательными зарядами других ионогенных групп). Такое состояние белка называется изоэлектрическим его состоянием, а pH среды, отвечающее этому состоянию, — изоэлектрической точкой (ИЭТ). Например, ИЭТ казеина и желатина равны соответственно 4,6 и 4,7. Поскольку [c.361]


    Таким образом, заряд белка зависит от соотношения в его молекулах карбоксильных и аминных групп и от pH среды. Значение pH раствора белка, при котором белок становится электронейтральный, называется изоэлектрической точкой данного белка. Каждый белок имеет свое значение pH, при котором он находится в изоэлектрическом состоянии. [c.340]

    Из сказанного выше следует, что прибавление электролита к коллоидному раствору, сопровождающееся специфической адсорбцией частицами коллоида ионов одного вида, может привести не только к уменьщению заряда частиц, но и к полной их нейтрализации и даже к перемене знака заряда коллоида. Все это действительно наблюдается на опыте. Состояние коллоида, в котором частицы его нейтрализованы, называется изоэлектрическим состоянием. В таком состоянии система обычно не бывает устойчивой. [c.523]

    Характерным для амфотерных полиэлектролитов является определенное значение рЯ-раствора, при котором электролит отщепляет равные (очень малые) количества н и ОН ионов. При этом молекула белка становится условно электронейтральной. Такое состояние молекулы, свернутой в клубок, с минимальным гидродинамическим сопротивлением называется изоэлектрическим, а соответствующая величина pH - изоэлектрической точкой (точка А на рис. 5,2), [c.83]

    Степень ионизации каждой группы зависит от pH среды и ионной силы раствора. Для полиамфолитов характерным является такое состояние, когда число ионизированных кислотных групп равно числу ионизированных основных, т. е. суммарный заряд макромолекул равен нулю. Это наблюдается при определенной концентрации ионов водорода, отвечающей изоэлектрической точке. В изоэлектрическом состоянии макромолекула стремится свернуться в наиболее плотный клубок. [c.152]

    В водном растворе при определенной концентрации водородных ионов, отвечающей изоэлектрической точке, у всякого амфо-лита (амфотерного электролита) число ионизированных основных групп равно числу ионизированных кислотных групп. При этом число как тех, так и других групп минимально.. Молекулу белка в изоэлектрическом состоянии следует считать в целом нейтральной. хотя она и имеет еще ионизированные группы. Условно ее можно изобразить в этом состоянии следующим образом  [c.469]

    Прямые методы сводятся к наблюдению за поведением частиц в электрическом поле при электрофорезе. При этом исследуемый белок подвергают электрофорезу в буферных растворах с разными значениями pH. В буферном растворе со значением pH, равным изоэлектрической точке белка, последний электронейтрален и не перемещается в электрическом поле. Эти наблюдения проводят либо макроскопически в особых электрофоретических аппаратах, либо микроскопически в кювете ультрамикроскопа. Помимо прямых методов наблюдения изоэлектричеекого состояния белков существуют и косвенные методы, которые сводятся к наблюдению максимума или минимума того или иного физического свойства, изменяющегося с изменением дзета-потенциала испытуемого раствора. Все эти методы подробно описаны в соответствующих руководствах. [c.340]


    Концентрации нитрата серебра и иодида калия равны. В этом случае золь находится в так называемом изоэлектрическом состоянии, т. е. в состоянии, при котором электрокинетический потенциал (дзета-потенциал) равен нулю. В этом случае противоионы диффузного слоя перешли в адсорбционный слой, а потому гранула лишена заряда. [c.320]

    В дисперсных системах, где потенциалобразующими ионами являются ионы Н+ и ОН , изоэлектрическому состоянию соответствует определенное значение pH среды, которое называется изоэлектриче ской точкой. Изоэлектрическая точка рНиэт зависит от кислотно-основных свойств вещества дисперсной фазы. Для большинства гидрозолей гидроксидов (кремния, титана, железа, алюминия и др.) pH иэт определяется соотношением констант равновесия реакций отш.енления и нрисоедине-ния протона Н+  [c.100]

    Механизм электролитной коагуляции. Как известно, гидрофобные коллоиды неустойчивы в изоэлектрическом состоянии, т. е. электронейтральные частицы коагулируют с наибольшей скоростью. На рис. 111 показана схема снятия заряда с коллоидной частицы при добавлении электролита с двухзарядными анионами. Как видим, гранула становится электронейтральной в том случае, если противоионы диффузного слоя, заряженные отрицательно, перемещаются в адсорбционный слой. Чем выше концентрация прибавляемого электролита, тем сильнее сжимается диффузный слой, тем меньше становится дзета-потенциал и, следовательно, тем быстрее начинается процесс коагуляции. При определенной концентрации электролита практически все противоионы перейдут в адсорбционный слой, заряд гранулы снизится до нуля и коагуляция пойдет с максимальной скоростью, так как отсутствие диффузного слоя обусловит значительное понижение давления расклинивания. [c.370]

    Обычная процедура высаливания состоит в предварительном доведении pH раствора до изоэлектрической точки осаждаемого белка. В состоянии изоэлектрической точки суммарный заряд [c.8]

    Увеличение концентрации ЦТАБ в системе после достижения изоэлектрического состояния (>2,5-10 М) приводит к росту положительных значений электрокинетического потенциала. Однако степень агрегации частиц (вплоть до концентрации ЦТАБ Ю М) вновь начинает расти, что может быть обусловлено разрушением ГС при появлении заряда на поверхности частиц, а также некоторой гидрофобизацией поверхности при [c.179]

    В результате анионные ВМС очень сильно уменьшают диффузионную подвижность влаги и миграцию ионов в торфяных системах (рис. 4.14) [230]. Действие катионных ВМС при малых концентрациях аналогично действию КПАВ. По мере увеличения содержания катионных ВМС в торфяных системах коэффициент диффузии воды и, следовательно, интенсивность миграции ионов увеличиваются, проходят через максимум, соответствующий изоэлектрическому состоянию материала (минимуму содержания в нем связанной воды), а затем снижаются [c.80]

    Опыт показывает, что в изоэлектрическом состоянии вязкость белков наименьшая. Это связано с изменением формы макромолекул, так как макромолекулы в развернутом состоянии придают растворам более высокую вязкость, чем макромолекулы, свернутые в спираль или клубок. [c.340]

    Электрокинетические явления, происходящие в неводных дисперсных системах, в частности влияние постоянного однородного электрического поля на суспензии твердых углеводородов нефти в органических растворителях, описано в работах [104, 114]. В качестве дисперсионной среды были взяты органические растворители разной природы, многие из которых широко применяются в процессах производства масел, парафинов и церезинов (н-гексан, н-гептан, изооктан, бензол, толуол, метилэтилкетон, ацетон и др.). Поведение суспензий в электрическом поле исследовали при 20 °С в стеклянной ячейке с плоскими параллельными никелевыми электродами в интервале напряженностей до 12,5 кВ/см. Установлено, что в алифатических растворителях происходит перемещение частиц дисперсной фазы (твердых углеводородов) в сторону катода, в то время как в ароматических растворителях эти же частицы перемещаются к аноду. Для твердых углеводородов, очищенных от ароматических компонентов и смол, в дисперсных системах с той же дисперсионной средой наблюдается явление двойного электрофореза, т. е. частицы дисперсной фазы перемещаются в сторону как положительного, так и отрицательного электрода. В суспензиях твердых углеводородов, где дисперсионной средой являются полярные растворители (МЭК, ацетон), явление электрофореза выражено слабо. Для таких систем характерна можэлектродная циркуляция, сопровождаемая агрегацией частиц. Эти электрокинетические явления в суспензиях твердых углеводородов объясняются существованием двойного электрического слоя на границе раздела фаз. Двойной электрофорез и меж-электродная циркуляция объясняются [115] поляризацией частиц твердой фазы и свойственны частицам, не имеющим заряда или находящимся в изоэлектрическом состоянии с мозаичным распределением участков с различным знаком заряда. Таким образом, у частиц дисперсной фазы как в полярной, так и в неполярной среде, отсутствует электрический заряд, а если он и есть, то весьма неустойчив. [c.187]


    Перед фильтрованием в воду вводится оптимальная доза коагулянта, при этом происходит сжатие диффузного слоя частицы (система переходит в состояние, близкое к изоэлектрическому), а процесс укрупнения их ускоряется столкновением с зернистой загрузкой. [c.145]

    Поскольку белок обычно является более сильной кислотой, чем основанием, то изоэлектрическая точка его лежит при pH ниже 7. Иначе говоря, для достижения изоэлектрической точки в растворе белка должнО содержаться некоторое количество кислоты, подавляющее избыточную ионизацию кислотных групп. Так как в изоэлектрической точке число взаимодействующих ионизированных основных и кислотных групп в молекуле одинаково, то гибкая макромолекула в этом состоянии свернется в клубок. Плотность клубка вследствие сил притяжения между разноименно заряженными группами будет больше той плотности, которая отвечает наиболее статистически вероятной форме макромолекулы или максимальной ее энтропии. [c.469]

    Белки являются полиамфолитами, т. е. они содержат как положительно, так и отрицательно заряженные ионогенные группы. Для всех полиамфолитов характерна зависимость их заряда от pH при низких pH они заряжены положительно, при высоких - отрицательно. Для каждого белка существуют такие значения рР1, при которых суммарный заряд молекулы равен нулю. Это значение pH определяется как изоэлектрическая точка. Очевидно, что изоэлектрическая точка полипептидной цепи определяется природой входящих в нее аминокислотных звеньев (см. табл. 6.7). Следует подчеркнуть, что все функции белков реализуются только в присутствии воды, т. е. в растворе или в набухшем состоянии. [c.340]

    Первый случай рассмотрен при обсуждении теорий Гуи — Чэпмена и Штерна. Очевидно, по мере увеличения содержания в системе такого электролита толщина двойного электрического слоя стремится стать равной толщине адсорбционного слоя за счет сжатия диффузного слоя. В результате -потенциал понижается, пока не станет равным нулю, что будет отвечать так называемому изоэлектрическому состоянию системы. [c.191]

    Естественно, что при изменении потенциала фо у коллоидных частиц будет изменяться и С-потенциал. В кислой среде -потенциал, как и фо-потенциал, имеет положительный знак, в щелочной среде — отрицательный. Очевидно также, что должно существовать такое значение pH, при котором -потенциал равен нулю и система окажется в так называемом изоэлектрическом состоянии. При этом состоянии число положительных и отрицательных зарядов на поверхности одинаково. [c.195]

    Наиболее полно изучены свойства растворов белков. В зависимости от pH раствора макроионы белков имеют положительный заряд (в кислой среде за счет групп — ЫНз ) или отрицательный заряд (в щелочной среде за счет групп —СОО ). Между этими состояниями белка существует состояние, при котором число ионизированных основных групп равно числу ионизированных кислотных групп. Это равнозарядное состояние называют изозлектрическим, а значение pH, отвечающее этому состоянию,— изоэлектрической точкой (ИЭТ). [c.468]

    Согласно уравнению Смолуховского, вязкость коллоидных систем при введении электролитов должна уменьшаться как вследствие снижения -потенциала, так и в результате увеличения электропроводности межмицеллярной жидкости. В изоэлектрическом состоянии золя (при = 0) уравнение Смолуховского переходит в уравнение Эйнштейна. Следует, однако, отметить, что при астабилизации коллоидной системы введением в нее электролита (вследствие уменьшения сил отталкивания между частицами в золе) возможны явления агрегации частиц, приводящие к образованию структур, и появлению структурной вязкости, что не предусмотрено уравнением Смолуховского. В результате этого понижение -потенциала частиц золя в определенных условиях может не только не вызывать понижения вязкости золя, но и обусловить ее повышение. [c.339]

    Результаты исследования электроноверхностных свойств и устойчивости дисперсии аморфного кремнезема [514] и расчеты энергии взаимодействия частиц по теории ДЛФО показали, что эта дисперсия более устойчива по сравнению с дисперсией кварца той же дисперсности. Наблюдаемые различия в устойчивости обеих систем при одном и том же составе дисперсионной среды (в том числе и при pH, соответствующих изоэлектрическому состоянию) объяснены разным вкладом структурной составляющей, т. е. структурными отличиями ГС у поверхности исследуемых частиц. [c.182]

    Как показал эксперимент, с ростом абсолютного значения -потенциала растет и агрегативная устойчивость латексов. Повышение устойчивости латексов с увеличением отрицательного -потенциала общеизвестно. Но подобная же зависимость наблюдается и для перезаряженных латексов с положительно заряженными частицами. При pH = 3,9 в изоэлектрическом состоянии стабилизованные латексы тотчас коагулируют. При pH = 3,1 идет процесс скрытой коагуляции, переходящий за сутки в явную. При pH = 2,7 явной коагуляции не происходит в течение 25 дней. [c.383]

    Экспериментальное определение изоэлектрической точки белковых растворов, как и определение изоэлектричеекого состояния лиофобных золей, может быть произведено прямым или косвенным методами. [c.340]

    Зависимости д от Ег, рассчитанные из кривых заряжения и изоэлектрических сдвигов потенциала и полученные адсорбционным методом, совпадают, что указывает на применимость термодинамической теории для описания состояния поверхности платины в растворах электролитов. [c.69]

    Нетрудно представить, что кривая, выражающая зависимость осмотического давления раствора желатина от pH, также должна иметь седлообразную форму. В изоэлектрическом состоянии свернутая в плотный клубок макромолекула обладает очень малой гибкостью и число сегментов, играющих роль кинетических единиц, минимально. При значениях pH выше и ниже изоэлектрической точки макромолекула желатина, распрямляясь, становится все более гибкой, что и обуславливает увеличение числа движущихся сегментов, а следовательно, и рост осмотического давления. При добавлении в раствор избытка кислоты или щелочи, как было показано выше, гибкость молекулярной цепочки начнет опять уменьшаться, уменьшится и число движущихся сегментов, в результате понизится также и осмотическое давление раствора. [c.472]

    В ИЭТ свойства белков характеризуются минимальной набу-хаемостью и растворимостью, а также минимальной вязкостью образующихся растворов. Это связано с изменением энергетического состояния и эффективного размера макромолекулы белка. В ИЭТ разноименно заряженные звенья макромолекулы притягиваются друг к другу и сжимают ее. Вне изоэлектрического состояния в макромолекуле появляется больше одноименных зарядов, взаимное отталкивание которых распрямляет макромолекулу. Эффективный размер растворенной макромолекулы возрастает, повышая вязкость раствора. [c.220]

    Для студней амфотерных белков максимальный синерезис наблюдается в изоэлектрической точке, так как в таком состоянии молекулы несут равное число разноименных зарядов, что способствует сжатию молекулярной сетки студня. С изменением pH среды (относительно изоэлектрической точки) синерезис уменьшается, так как молекулярные цепочки приобретают одноименный заряд, обусловливающий их распрямление и отталкивание друг от друга. [c.491]

    В изоэлектрическом состоянии происходит более уплотненная агрегация макромолекул с образованием более сложных [c.300]

    В сильно кислой среде все соли уменьшают набухание вблизи изоэлектрического состояния соли могут как понижать, так и повышать степень набухания, причем анионы оказывают более сильное влияние, чем катионы. [c.301]

    Практически можно подобрать такую концентрацию ионов водорода, при которой количество ионов РСОО и НЫНз будет одинаковым. Такое состояние называется изоэлектрическим. Концентрация ионол водорода, при которой белок находится в изоэлектрическом состоянии, называется изоточкой белка. [c.192]

    Коагулирование сточных вод иногда можно проводить изменением pH воды. Например, в бытовых сточных водах имеются белковые вещества, которые вследствие своей амфотерности могут выпадать в осадок при изоэлектрическом состоянии, лежащем в пределах pH от 4 де 7. При подкислении выпадают также мыла и трудгюрастворимые в воде свободные высокомолекулярные жирные кислоты. [c.228]

    Результат опыта. Наибольшее помутнен-ие (полное разрушение золя) наблюдается в цилиндре, где раствор желатины находится в изоэлектрическом состоянии (pH 4,7). В цилиндрах со слабокислым или слабощелочным раствором наблюдается лишь небольшое помутнение, в цилиндрах, где добавленные растворы имели сильнокислую или силшощелочную реакцию, помутнения растворов вовсе не наблюдается. [c.238]

    Аналогичную форму должна иметь и кривая, выражающая зависимость объема студня желатина от pH жидкости, с которой студень находится в состоянии равновесия. Действительно, опыты Лёба показали, что степень набухания желатина в воде в зависимости от pH может быть представлена седлообразной кривой с минимумом, отвечающим изоэлектрической точке, и с двумя максимумами, лежащими по правую и левую сторону от минимума. Эта кривая изображена на рис. XIV, 14. [c.471]

    В изоэлектрической точке, отвечающей для амфотерных по своим свойствам поверхностей тому состоянию, когда число ионов разных знаков в пограничном слое одинаково и двойной слой исчезает, отсутствует и механизм для осуществления направленного потока жидкости. При возрастании концентрации электролита в растворе диффузный слой ионов сжимается и принимает структуру гельмгольцевского слоя, что также приводит к исчезновению механизма для передвижения жидкости, и электроосмос прекращается. Иллюстрацией этой закономерности являются результаты опытов Рэми (рис. 24). [c.50]

    На поверхности клеточной стенки микроорганизма расположены макромолекулы, содержапдие ионогенные группы, которые способствуют образованию на ней заряда. Поверхность микробной клетки заряжена отрицательно, так как среди компонентов, образующих эту поверхность, присутствуют соединения, изоэлектрическое состояние которых лежит в кислой среде. Отдельные организмы не поляризованы, так как заряд равномерно расположен по поверхн ности.  [c.249]

    Введением AI I3 были получены латексы в изоэлектрическом состоянии, причем в них не происходило явной коагуляции. Это указывает на то, что их устойчивость обусловлена не электростатическими силами, а в основном гидратацией полярных участков цепей стабилизатора. Однако агрегативная устойчивость латексов, содержащих неионогенный стабилизатор, в изоэлектрическом состоянии ниже, чем агрегативная устойчивость исходных латексов. Таким образом, заряд латексных глобул, обусловленный адсорбцией ионов, все же способствует повышению устойчивости латексов. [c.385]

    Диффузная часть двойного электрического слоя наиболее лабильна и изменчива. Противоионы обмениваются на другие ионы того же знака. Повышение концентрации раствора приводит к вытеснению противоионов из диффузной в плотную часть двойного электрического слоя. То.лщина двойного электрического слоя и величина -потенциала уменьшаются. При некоторой концентрации раствора (примерно 0,1 н) все противоионы оказываются вытесненными в адсорбционный слой и С-потенциал становится равным нулю. В этом случае изменение межфазового потенциала от его максимального значения на поверхности твердой фазы до нулевого целиком происходит в пределах адсорбционного слоя. Такое состояние коллоидной мицеллы называют изоэлектрическим состоянием. [c.307]


Смотреть страницы где упоминается термин Состояние изоэлектрическое: [c.75]    [c.175]    [c.164]    [c.25]    [c.72]    [c.220]    [c.81]    [c.300]    [c.301]   
Физическая и коллоидная химия (1988) -- [ c.205 , c.262 ]

Учебник физической химии (1952) -- [ c.386 ]

Курс химии Часть 1 (1972) -- [ c.233 ]

Учение о коллоидах Издание 3 (1948) -- [ c.205 , c.352 ]

Учебник физической химии (0) -- [ c.426 ]

Физическая химия Издание 2 1967 (1967) -- [ c.326 ]




ПОИСК





Смотрите так же термины и статьи:

Белки изоэлектрическое состояни

Белки изоэлектрическое состояние

Белковые вещества изоэлектрическое состояние

Изоэлектрическое состояние белков

Коллоидные системы изоэлектрическое состояни

Коллоиды изоэлектрическое состояние

Опыт 87. Изоэлектрическое состояние высокомолекулярных соединений

Системы изоэлектрическое состояние



© 2025 chem21.info Реклама на сайте