Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теории диффузионные

    Теория диффузионного перенапряжения без учета конвекции [c.303]

    Теория диффузионного перенапряжения с учетом конвективной диффузии [c.311]

    Величина бр использовалась в первоначальной теории гомогенного реакционного перенапряжения в том смысле, в каком диффузионный слой б использовался в теории диффузионного перенапряжения. [c.327]

    Для стоксового режима обтекания твердой сферы при больших значениях Ре критерий Шервуда, определенный с помощью методов теории диффузионного пограничного слоя [278] равен  [c.196]


    В настоящем разделе изложены пленочная модель применительно к быстропротекающей необратимой и обратимой бимолекулярным реакциям, уточнение пленочной теории с помощью модели приведенной пленки, пенетрационная модель, расчеты в приближении теории диффузионного пограничного слоя и некоторые численные решетя. [c.266]

    Крылов [400] рассмотрел решение уравнений (6.66), (6.67) при Reбольших значениях Ре в приближении теории диффузионного пограничного слоя. Результаты расчетов позволили оценить применимость приближенных решений по модели проницания, широко используемой для описания газожидкостных реакций [401,402]. При значениях [c.273]

    Однако применительно к решению практических задач наибольший интерес представляет случай больших значений Ре, так как обычно /)< 10 см/с и Ре = 10 - -10 . Это позволяет значительно упростить задачу и рассматривать ее в рамках теории диффузионного пограничного слоя. [c.209]

    Теория диффузионного пограничного слоя. Эта теория в основном справедлива для случая твердой фиксированной границы раздела фаз. В основе теории лежит гипотеза о постепенном затухании турбулентного движения по мере приближения к твердой границе раздела со стороны жидкой или газовой фазы. Физическая схема турбулентного потока в соответствии с данной моделью показана на рис. 2.14 [141. Ядро потока (область I) характеризуется режимом развитой турбулентности и постоянной концентрацией растворенного вещества. В области II, расположенной [c.153]

    Теорию диффузионного перенапряжения целесообразно рассмотреть на примере системы [c.500]

    В основу рассмотрения явления конвективной диффузии положена теория диффузионного граничного слоя, которую разделяют большинство ученых Советского Союза. [c.267]

    Поэтому Гун (1910) и Чэпмен (1913) развили теорию диффузионного двойного ионного слоя, которая в отличие от теории Гельмгольца связывает плотность заряда в двойном слое с составом [c.417]

    Недостаток теории диффузионного двойного ионного слоя, развитой Гуи и Чэпменом, заключается в том, что эта теория не учитывает собственного объема ионов, что предполагает сколь угодно близкий подход последних к поверхности металла и в конечном итоге ведет к завышению величины емкости, рассчитываемой по уравнению (ХУ.20). Таким образом, теория Гуи и Чэпмена не дает правильных количественных расчетов величины емкости двойного электрического слоя. [c.418]


    В основе теории диффузионного импеданса лежит 2-й закон Фика, который при изменении концентрации только по одной координате записывается следующим образом  [c.197]

    Теория диффузионного потенциала была развита М. План-ком (1890 г.), а впоследствии Гендерсоном (1907 г.). Полученные ими формулы расчета диффузионного потенциала весьма сложны. Решение значительно упрощается, если диффузионный потенциал возникает на границе двух растворов с разными концентрациями l и С2 одного и того же электролита. В этом случав диффузионный потенциал вд равен  [c.331]

    Это уравнение является основным в теории диффузионного потенциала. Оно может быть переписано в виде  [c.177]

    Наибольшей диффузностью двойной слой обладает вблизи точки нулевого заряда. Метод измерения емкости двойного слоя позволяет исследовать изменения, происходящие в двойном электрическом слое, в частности кинетику адсорбции поверхностно активных веществ, деформацию ионов под влиянием электрического поля, изменение толщины двойного слоя при адсорбции атомов и молекул. Сравнительное изучение поведения ряда металлов в водных растворах показало, что строение ионного двойного слоя относительно мало зависит от природы металла. Вместе с тем определение значения емкости двойного слоя помогает судить о строении и истинной поверхности металлического электрода. Измерения емкости в разбавленных растворах позволили, например, непосредственно проверить на опыте теорию диффузионного строения двойного слоя и определить величину потенциала l3], создаваемого частью двойного слоя, находящейся на расстоянии одного ионного радиуса от поверхности электрода. [c.225]

    Вальтер Фридрих Нернст (1864—1941)—немецкий физико-химик, в 1887—1889 гг. работал ассистентом В. Оствальда в Лейпциге, с 1894 г. профессор Геттингенского университета. По его инициативе в Геттингене в 1896 г. был построен Институт физической химии и электрохимии. Разработал теорию электролитического растворения металлов и электродных потенциалов и теорию диффузионных потенциалов. Впервые объяснил причину и механизм возникновения электродвижущих сил. В 1893 г. опубликовал учебник Теоретическая химия с точки зрения закона Авогадро и термодинамики , выдержавший много изданий (15-е издание вышло в 1926 г.). Лауреат Нобелевской премии (1920), [c.315]

    Рассмотрим подробнее геометрию течения вблизи капли. Нули функции / (т]) определяют iq-координаты критических точек или линий на поверхности капли, причем в случае критических линий координатные поверхности Ц Ц (/ (л ) — 0) разделяют области, в которых главный член разложения (1.2) сохраняет знак. Эти критические точки и линии играют важную роль в теории диффузионного пограничного слоя. Они могут быть двух типов в их малой окрестности нормальная компонента скорости жидкости направлена либо к поверхности капли (точки [c.55]

    Опираясь на результаты, полученные в 2, а также на общие представления о механизме переноса вещества и структуре поля концентрации (гл. 1), рассмотрим картину изменения поля концентр ации внутри движущейся капли с течением времени, следуя работе [121]. Цель этого анализа состоит в том, чтобы установить пределы применимости теории диффузионного пограничного слоя для области внутри капли и перейти затем к модели, пригодной для описания процесса массопереноса при больших значениях времени. [c.289]

    Элементы теории диффузионных явлений [c.64]

    В первой количественной теории диффузионного перенапряжения, создаипой главным образом Нернстом и Бруннером на рубеже XIX и XX столетий (1888—1904), учитывается лишь миграция ионов и их диффузия. В теории Нернста — Бруннера предполагается, что все изменение состава электролита сосре.шточено в узком слое раствора, примыкающем к электроду,— в диффузионном слое б. Этот слой [c.303]

    Си, так как рассматривается катод гый -процесс). Таким образом, градиент концентрации, определяющий скорость диффузии, равен (с о—Ск)/б. Наконец, в этой теории принимается, что концентрации и активности совпадают (хотя это предположение и не делалось ее авторами, поскольку в те годы еще не существовало понятия активности) и что числа нерепоса не зависят от состава раствора. Последнее допущение оправдывается лищь в случае растворов, содержащих бинарный электролит, подвижности ионов которого почти одинаковы. Основные положения теории диффузионного перенапряжения Нернста—Бруннера целесообразно рассмотреть поэтому на примере системы [c.304]

    Несмотря на недостатки теории Нернста—Бруннера (невозмож-лссть теоретического расчета предельной плотности тока, физическая несостоятельность модели диффузионного слоя), потребовалось почти сорок лет для создания новой, более совершенной теории диффузионного перенапряжения. Успехи в этом направлении были, до тигнуты благодаря применению к явлениям диффузии основных положений тепло- и массопередачи, в частности законов гидродии , [c.311]


    Как видно из изложенного выше, значительная часть существующих в настоящее время теорий массопередачн (таких как теории проницания и обновления поверхности и их различные модификации) основана на слишком грубых упрощениях и подменяет учет конкретных гидродинамических условий введением не поддающихся расчету и ненаблюдаемых параметров. Перспективной представляется только теория диффузионного пограничного слоя, позволяющая путем физически обоснованных упрощений преодолеть математические трудности, связанные с решением уравнения конвективной диффузии, и разумно родойти к описанию турбулентного режима массопередачи. Несмотря" на [c.183]

    И термодинамической теории диффузионных процессов разделения гипотеза теоретической тарелки (ступени) принимается за количественную основу при переходе от составов фаз л одном межтарелочном отделении к составам фаз в соседнем. Особенность этой теорнп состоит в том, что она не занимается вопросом [c.78]

    Максимальное значение этой величины равно 1,5 и достигается при обтекании потоком идеальной жидкости. На практике такому случаю соответствует обтекание газового пузырька при больших значениях Ке. Критерий Шервуда при этом достигает максимального значения и определяется формулой (4.16). Она широко известна как формула Хигби, хотя впервые была получена Буссинеском в приближении теории диффузионного пограничного слоя при обтекании капли потоком идеальной жидкости [280]. [c.199]

    Здесь также при переходе от ньютоновских к псевдопластическим жидкостям коэффициент массообмена возрастает, а при переходе к ди-латантным - уменьшается. При больших значениях Ре (Ре> 100- 1000) результаты численных расчетов хорошо согласуются с данными, полученными в приближении теории диффузионного пограничного слоя [344]  [c.216]

    По сути дела, рассмотренные результаты представляют собой два приближенных решения уравнения конвективной диффузии, полученные при различных упрощающих задачу допущениях. Однако, как уже говорплось выше, более строгое численное решение задачи [30, 33, 43, 44] дало результаты, близкие к решению Кронига — Бринка, и показало полную несостоятельность применения теории диффузионного пограничного слоя к решению внутренней задачи [46]. [c.204]

    Формула (12.95) также может быть рекомендована для вычисления коэффициентов массопередачи в системе жидкость—газ. Более общее выражение, пригодное для аналогичных расчетов в системе жидкость—жидкость, было выведено Броунштейном и Фишбейном [61]. Авторы решали задачу в рамках теории диффузионного пограничного слоя, используя решение гидродинамической задачи, полученное Хамилеком и Джонсоном [54] для интервала изменения значений критерия Рейнольдса О <[ Ке < 80. Распределение концентраций переходящего компонента и хемосорбента в диффузионном пограничном слое описы- . [c.241]

    Теория диффузионного распространения пламени в изотермических условиях была дана Зельдовичем и Франк-Камеыецким (см. [136, 50]), которые показали, что в простейшем случае кинетика реакции отвечает автокатализу второго порядка, сопровождаемому расходованием активного вещества по первому порядку. Семеновым с сотр. 2] был проведен на ЭB VI расчет скорости и пределов распространения холодного пламени сероуглерода с использованием механизма и констант скорости, приведенных в [69]. Оказалось, что изложенные в атом обзоре представления о механизме реакции позволяют объяснить наблюдающиеся на опыте факты [полуостров распространения пламени, сдвинутый относительно полуострова самовоспламенения в область низких температур, ненулевые значения скорости на пределах, вид кривой ((, (р) и т. д.]. Значение скорости получено близким к экспериментальной величине. [c.237]

    Вычисления скорости пламепи из кинетики реакции горения особенно сложны в случае диффузионного распространения пламени в неизотермических условиях. Поэтому все предпринимавшиеся до сих пор попытки аналитического решения топ задачи в той или иной степени носят чисто качественный формально-математический характер. Одпой из попыток является теория диффузионного рпспространения пламени, развитая Тенфордом и Пизом [548]. Согласно этой теории, в зону подогрева атомы водорода поступают из зоны горения путем диффузии, из чего Тенфорд и Пиз заключают, что теплопроводность не играет существенной роли в распространении пламени  [c.237]

    Теория диффузионного горения капли жидкого топлива впервые и в наиболее общей форме была разработана Г. А. Варшавским. Позднее и независимо от Г. А. Варшавского диффузионное горение капли было рассмотрено Сполдингом, а также Гольдсмитом и Пен-нером. Значительные уточнения в теорию были внесены И. И. Па-леевым, М. А. Гуревичем и Ф. А. Агафоновой. [c.247]

    I) миграции заряженных частиц 2) диффузии, возникаюш.ей при различной концентрации вещества около электрода и в массе электролита 3) конвекции — перемещения вещества вместе с потоком движущейся жидкости. 15 оПщей теории диффузионного перенапряжения, предложенной Нернстом и Бруннером, учитываются только миграция и диффузия. Влияние конвекции рассматривается в настоящее время в применении к определенным видам электродов — плоскому, вращающемуся дисковому и некоторым другим. [c.500]

    Осуществленное А. Н. Фрумкиным с сотрудниками измерение скачка потенциала в адсорбционном слое в сочетании с другими методами исследования позволило выяснить характер расположения молекул на поверхности, а также закономерности взаимодействия между ионами двойного слоя и диполями адсорбированных органических молекул. М. А. Проскурнин, Б. В. Эрщлер, Б. Б. Дамаскин и др. детально рассмотрели и усовер-щенствовали методику измерения емкости двойного электрического слоя на границе металл — раствор, в результате чего удалось опытным путем определить абсолютное значение емкости и подтвердить теорию диффузионного строения двойного слоя. Эти исследования выяснили причины перезарядки коллоидов и привели к новому методу определения потенциалов нулевого заряда металлов. [c.10]


Смотреть страницы где упоминается термин Теории диффузионные: [c.311]    [c.319]    [c.78]    [c.84]    [c.200]    [c.269]    [c.209]    [c.500]    [c.221]    [c.290]   
Пожаротушение на предприятиях химической и нефтеперерабатывающей промышленности Изд2 (1979) -- [ c.30 ]




ПОИСК







© 2025 chem21.info Реклама на сайте