Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Микроанализ электронно-зондовый

    Л. а. микровключений и микроучастков осуществляют электронно-зондовыми методами, ионным микроанализом и др. [c.611]

    Поскольку бомбардировка электронами вызывает распад в-ва, при анализе и изучении хим. связей применяют вторичное излучение, как, напр., в рентгеновском флуоресцентном анализе (см. ниже) и в рентгеноэлектронной спектроскопии. Только в рентгеновском микроанализе (см. Электронно-зондовые методы) используют первичные рентгеновские спектры, т. к. пучок электронов легко фокусируется. [c.239]


    Монография содержит все необходимые сведения по растровой электронной микроскопии и рентгеновскому микроанализу и может служить ценным практическим руководством для исследователей, студентов и лиц, впервые столкнувшихся с необходимостью применения электронно-зондовых методик. Русское издание дополнено списком работ отечественных и зарубежных авторов, вышедших с середины 1978 г. [c.6]

    В 1968 г. была опубликована важная работа [105], в которой впервые было описано использование твердотельного детектора рентгеновских лучей в электронно-зондовом микроанализаторе. Хотя эта система едва могла разрешать соседние элементы, она все же продемонстрировала возможность совместного использования двух приборов. В течение нескольких последующих лет разрешение детектора было значительно улучшено — от 500 эВ до менее чем 150 эВ, в результате чего эта методика стала существенно более пригодной к требованиям микроанализа. В настоящее время идея использования твердотельных детекторов в рентгеновской спектроскопии средних энергий (1 —12 кэВ) не является новшеством и их можно найти в боль-шо.м числе растровых и просвечивающих микроскопов, а также в рентгеновских микроанализаторах. [c.210]

    В настоящее время установлено, что пучки высокоэнергетических электронов, используемые в электронной микроскопии и микроанализе, могут разрушающе действовать на образец. Такое повреждение пучком обычно более значительно в органических и биологических образцах 180], и важно знать о таких вызываемых пучком изменениях, как большие разрушения образца, потери органического материала и испарение летучих элементов. Хотя в настоящее время возможно проводить анализ при низких токах пучка (0,1—5 нА), при этом все же имеют место значительные потери материала. Естественно, количество теряемого из образца материала зависит как от образца, так и от тока пучка, но обычно оно составляет около 30% [181], хотя в литературе имеются данные о потерях, составляющих почти 90% [182]. Потеря массы органического материала является серьезной проблемой, особенно в случаях, когда количественные измерения выполняются с использованием спектра непрерывного излучения (см. разд. 7.7.6) и все зависит от точной меры локальной массы в процессе анализа. Потери массы органического материала в любых типах электронно-зондовых приборов можно уменьшить за счет охлаждения образца. В работе [183] и позднее в, [181 и 180] было показано, что потери массы значительно уменьшаются, если образец находится прн низких температурах. В этом заключается другое преимущество использования замороженных в гидратированном состоянии образцов, хотя последние исследования показали, что даже охлаждение образца до температур жидкого азота недостаточно для полного исключения потерь массы. [c.71]


    Рентгеноспектральный локальный микроанализ. Наиболее распространенным видом этого анализа является рентгеноспектральный микроанализ с электронным зондом (электронно-зондовый микроанализ). В этом случае анализируемая зона образца имеет микронные размеры, эффективная навеска пробы составляет менее 10 ° 3, а предел обнаружения достигает 10 г, или 0,01% в объеме 10 мкм [41]. Электронным зондом обычно исследуют шлифы образцов с высоким качеством их полировки [4861 наиболее удобный размер образца диаметр 25,8—32,2 мм, толщина 13 мм. Для проведения анализа измеряют интенсивность рентгеновских лучей от исследуемого образца по отношению к их интенсивности стандарта подобного состава или нескольких стандартов отдельных элементов в виде металлов или окисей. Используют два варианта 1) укрепляют стандарты в одном держателе с образцом и вместе их полируют 2) в камере образца большинства промышленных электронных зондов делают приспособления для установки нескольких отдельных образцов. Одним из важнейших недо- [c.117]

    При исследовании неметаллических образцов на их поверхность напыляется тонкий слой (— 0,1 мкм) сверхчистого металла (А1, Ли, Мп, Си, Ag и др.). Для проведения электронно-зондового микроанализа используют кристалл-дифракционные рентгеновские спектрометры и спектрометры с анализом энергетического расщепления рентгеновского излучения. В качестве детекторов рентгеновского излучения используют счетчики Гейгера — Мюллера, газонаполненные пропорциональные и сцинтилляционные счетчики [41, 366, 820], а также 81(Ь1)-детекторы [366, 1001]. [c.118]

    Исследования методом электронно-зондового микроанализа, проведенные Ченом и Андерсоном [153], также показывают неоднородность структуры типичного образца плавленого магнетита до восстановления водородом. Катализатор содержал [c.233]

    Для H.a. примешпот методы рентгенофлуоресцентного, активационного, рентгенорадиометрич. анализа и др. Когда спец. подготовки образца х анализу не требуется, H.a. можно проводить методами локального анализа (ионный микроанализ, электронно-зондовые методы, методы фотоэлектронной и рентгеноэлектронной спектроскопии, масс-спектрометрия вторичных ионов и др.). [c.220]

    Л. а. субмикронных и поверхностных слоев проводят методами рентгеноспектрального анализа (см. Электронно-зондовые методы), катодолюминесцентного микроанализа, спектроскопии рассеяния быстрых ионов (резерфордовского рассеяния), масс-спектрометрии вторичных ионов в динамич. режиме, оже-спектроскопии и др. При послойном анализе субмикронных слоев без разрушения образец бомбардируют заряженными частицами (электронами, ионами). В зависимости от их энергии меняется глубина, на к-рой происходят процессы, приводящие к появлению аналит. сигнала - рентгеновского излучения, резонансных ядериых р-ций, резерфордовского рассеяния и др. Послойный анализ можно также проводить, варьируя угол отбора, т.е. угол, под к-рым к исследуемой пов-сти располагается приемник аналит. сигнала. [c.610]

    Рассмотрим прежде всего железные катализаторы, полученные методом сплавления. Распределение в них стабилизаторов определяется химической природой последних. Окислы алюминия, магния и титана до некоторой степени растворяются в магнетите. То же самое можно сказать и о СаО, Ь1гО и Na20, однако К2О и ВаО в магнетите нерастворимы (эти окислы щелочных и щелочноземельных металлов относятся к химическим промоторам) [151]. Если содержание окислов алюминия и магния превыщает 1 мол.%, они растворяются, по-видимому, уже не полностью [152] и часть окислов, как показывают данные электронно-зондового микроанализа [153], образует отдельную фазу. Двуокись кремния (и двуокись циркония ), вероятно, нерастворима в магнетите введенная как стабилизатор, двуокись кремния обнаружена в слое, разделяющем зерна магнетита. Двуокись кремния препятствует растворению в магнетите более основных окислов (образует с ними соединения), и поэтому ее присутствие затрудняет равномерное распределение химических промоторов щелочных или щелочноземельных металлов [151]. [c.233]


Библиография для Микроанализ электронно-зондовый: [c.43]    [c.205]    [c.332]    [c.158]    [c.369]    [c.190]    [c.53]    [c.54]    [c.204]    [c.54]   
Смотреть страницы где упоминается термин Микроанализ электронно-зондовый: [c.88]    [c.701]    [c.323]    [c.322]    [c.322]    [c.197]    [c.211]    [c.216]    [c.626]    [c.639]    [c.253]    [c.201]   
Методы количественного анализа (1989) -- [ c.16 ]




ПОИСК





Смотрите так же термины и статьи:

Микроанализ



© 2025 chem21.info Реклама на сайте