Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рентгеновский анализ флуоресцентный

    Практической целью методов атомной спектроскопии при анализе вещества является качественное, полуколичественное или количественное определение элементного состава анализируемой пробы. Еще 25—30 лет назад эти задачи решались, по существу, лишь одним из методов — атомно-эмиссионным методом спектрального анализа в оптическом диапазоне спектра, В настоящее время достаточно широкое применение получили также методы анализа по атомным спектрам поглощения и флуоресценции в оптическом диапазоне, а также по эмиссионным и флуоресцентным спектрам в рентгеновском диапазоне. Во всех случаях в основе этих методов лежат квантовые переходы валентных или внутренних электронов атома из одного энергетического состояния в другое. [c.53]


    Предлагаемое практическое руководство обобщает опыт преподавания физических и физико-химических методов анализа, накопленный на кафедре аналитической химии Московского государственного университета. Руководство включает два больших раздела— спектроскопические и электрохимические методы. В спектроскопические методы включены методы эмиссионной фотометрии пламени, атомно-абсорбционной спектроскопии пламени, абсорбционной молекулярной спектроскопии и люминесцентный в электрохимические — потенциометрический (в том числе с использованием ионоселективных электродов), кулонометрический, полярографический и амперометрический методы. Наряду с перечисленными методами в современных аналитических ла- бораториях используют и другие методы атомно-флуоресцентный анализ, рентгеновские методы, искровую и лазерную масс-спектрометрию, радиоспектроскопические, ядерно-физические и радиохимические методы, однако ограниченное число учебных часов не позволяет включить их в данное руководство. Изучение этих курсов предусмотрено [c.3]

    Очень эффективным оказалось применение рентгеновского флуоресцентного метода в анализе космических объектов. С помощью спектрометрической аппаратуры РИФМА (рентгеновский изотопный флуоресцентный метод анализа), установленной на Луноходе-1 , было определено содержание основных породообразующих элементов непосредственно на поверхности Луны. Для возбуждения флуоресцентного излучения применялись радиоактивные источники, характеризующиеся высокой стабильностью и не нуждающиеся в электрической энергии. В качестве детектора использовались пропорциональные счетчики. Электрический импульс счетчика преобразовывался и по радио передавался на Землю. [c.132]

    В США запатентована система рентгеновского анализа с регистрацией рассеянного излучения и флуоресцентного излучения трех компонентов пробы . Е Великобритании запатентованы устройство рентгеновского флуоресцентного анализа с применением промежуточной мишени для увеличения выхода флуоресценции способ флуоресцентного анализа с использованием трубки, бериллиевый анод которой покрыт слоем германия или хрома, и фильтра для выделения флуоресцентного излучения, детектируемого счетчиком Гейгера способ определения сернистости угля по корреляции с железом, где использован Ри и регистрируется рассеянное излучение и флуоресцентное излучение Ре способ флуоресцентного анализа с установкой друг за другом источника, мишени, пробы и детектора. В ФРГ запатентованы" устройство флуоресцентного анализа, в котором излучение источника направляется на пробу двумя рефлекторами (мишенями) способ и устройство для определения зольности с регистрацией рассеянного излучения и флуоресцентного излучения Ре способ и устройство для анализа состава проб с коллимацией и мишенями. Во Франции запатентованы способ и устройство флуоресцентного анализа с трубкой из бериллия и равновесным фильтром перед счетчиком .  [c.38]


    Рентгено-снектральный анализ по вторичным спектрам. I. Рентгеновский коротковолновой флуоресцентный спектрограф  [c.32]

    Рентгеноспектральный метод обладает меньшей чувствительностью и по этой причине применяется для анализа проб руд и минералов с повышенным содержанием рзэ [32, 47, 54, 76, 219, 333, 334, 590, 1807, 1808]. В последнее время он в основном используется во флуоресцентном варианте. Поскольку рентгеновские спектры более просты, чем эмиссионные, в настоящих определениях достигается несколько большая точность — в среднем +5%, а в отдельных случаях и еще большая [47, 1808]. Чувствительность определений примерно одинакова для всех рзэ и составляет — 0,1%. Отмечено, что особенно удобно пользоваться методом при анализе Y на фоне рзэ. [c.217]

    Массовый коэффициент ослабления играет очень важную роль в количественном анализе. Как возбуждающее первичное излучение, так и флуоресцентное излучение ослабляются в пробе. Для того чтобы связать наблюдаемую интенсивность флуоресценции с концентрацией, необходимо учитьшать это ослабление. Поскольку массовый коэффициент ослабления очень велик для рентгеновского излучения малой энергии (длинноволнового), точное определение легких элементов представляет большую сложность в РФС. В табл. 8.3-4 указаны массовые коэффициенты ослабления для некоторых элементов при различной энергии рентгеновского излучения, соответствующей характеристическим рентгеновским линиям. Обозначение К-Ьз,2, используемое в табл. 8.3-4, относится к линии Ка (см. с. 65). [c.63]

    Рентгено-флуоресцентная спектроскопия (РФС) приобретает все большее значение в анализе следовых количеств элементов, В качестве источника возбуждения используют обычную рентгеновскую трубку или чаще радиоактивные изотопы. Этот метод относится к неразрушающим и позволяет определять содержание многих элементов это обеспечило ему прочное положение при проведении серийных анализов твердых веществ. Предел обнаружения элементов во многих случаях составляет >10 млн . Но и в этом методе необходимо применять эталоны. В сочетании с химическими методами концентрирования (например, с осаждением с малорастворимыми сульфидами) дает хорошие результаты при анализе жидких или растворенных проб во многих случаях можно снизить предел обнаружения на несколько порядков, если удается взять для анализа достаточно большую пробу (например, при анализе родниковой, речной, морской воды на содержание следовых количеств элементов). [c.417]

    Поскольку бомбардировка электронами вызывает распад в-ва, при анализе и изучении хим. связей применяют вторичное излучение, как, напр., в рентгеновском флуоресцентном анализе (см. ниже) и в рентгеноэлектронной спектроскопии. Только в рентгеновском микроанализе (см. Электронно-зондовые методы) используют первичные рентгеновские спектры, т. к. пучок электронов легко фокусируется. [c.239]

    Фотоэлектрическое поглощение рентгеновского излучения мертвым слоем кремния приводит к эмиссии 5 /С-рентгеновско-го излучения из этого слоя в активный объем детектора. Это рентгеновское излучение кремния, которое не идет от образца, появляется в спектре в виде небольшого пика кремния, так называемого пика внутренней флуоресценции кремн Ия. Пример такого эффекта показан на спектре чистого углерода (рис. 5.26), в котором имеется также заметный край поглощения кремния. Для различных случаев количественного анализа интенсивность этого флуоресцентного типа соответствует кажущейся концентрации в 0,2 вес. % или меньше 51 в образце. [c.223]

    Разработана методика определения микроколичеств хрома флуоресцентным рентгенорадиометрическим методом в образцах снега Антарктиды [276]. Анализ проводили на установке ОИЯИ [427], включающей в качестве источника возбуждения 10 мкКи полупроводниковый 81(Ь1)-детектор толщиной 3 мм, площадью 100 мм и 4000-канальный анализатор Тп(1ас. Для достижения максимальной чувствительности определения измерение образцов и эталонов проводят в тонких слоях (0,3 мг-см ) на мембранных фильтрах. Рентгеновские спектры образца и фильтра приведены на рис. 16 они показывают возможность одновременного определения Аг, Са, Т1, Сг, Ре, Си, 2п, РЬ, Вг, Зг, 7г. Предел обнаружения хрома 7-10 3. [c.116]

    Рентгеноспектральный анализ основан на возбуждении атомов вещества при облучении его электронами больших энергий или рентгеновскими лучами. В первом случае процесс называют прямым возбуждением, во втором — вторичным или флуоресцентным. Линии рентгеновского излучения возникают вследствие перемещения электронов в наиболее глубоких внутренних электронных слоях. [c.44]

    Бартон [346] разработал метод количественного флуоресцентного анализа для фтора, кислорода, азота, углерода и бора. Комбинированная методика предусматривала применение вакуумного спектрографа, кристаллического сцинтиллятора, проточного пропорционального счетчика и съемного источника интенсивного рентгеновского излучения. Анализ спектров излучения указанных элементов проводили на основе линий Ка, Излучение уровня а Си (13,3 А) было использовано для возбуждения элементов от [c.43]


    Флуоресцентный рентгеновский способ обеспечивает более высокую точность определения по сравнению со способом анализа по первичным спектрам и уже нашел ряд применений в анализе редкоземельных минералов [47, 333, 862, 1350, 1353], хроматографических фракций, получаемых в ходе разделения смесей [1314], а также при определении V в рзэ [1083]. [c.209]

    Процесс возбуждения рентгеновской флуоресценции аналогичен процессу возбуждения характеристического рентгеновского излучения электронами. Спектры рентгеновской флуоресценции содержат информацию, необходимую для анализа элементного состава веществ и материалов. При качественном анализе определяют длины волн флуоресцентных линий, а затем с помощью таблиц (см. Приложение III) устанавливают принадлежность зарегистрированных линий тем или иным элементам. [c.7]

    Флуоресцентный анализ с использованием рентгеновского или у-излучения [c.41]

    Советская автоматическая станция Луна-10 в 1966 г. провела первые дистанционные анализы лунной поверхности. На станции был установлен гамма-спектрометр, с помощью которого удалось получить первые сведения о содержании радиоактивных элементов в породах Луны. Эти данные привели к заключению, что морские районы Луны содержат горные породы, по своему составу близкие к земным базальтам. Дистанционный автоматический анализ лунных пород, начатый Луной-10 , был продолжен луноходами. На Луноходе-1 , а затем и на Луноходе-2 были установлены приборы для рентгенофлуоресцентного анализа лунного грунта. Приборы эти назывались несколько необычно, почти поэтично РИФМА. А происхождение этого названия очень простое— оно образовано начальными буквами названия метода рентгеновский изотопный флуоресцентный метод анализа. Поверхность Луны подвергается действию рентгеновского излучения, испускаемого изотопным источником. При этом многие атомы, входящие в состав лунных пород, ионизируются. Испускаемое этими атомами вторичное рентгеновское излучение имеет энергию, соответствующую определенному элементу. Измеряя это вторичное излучение, нетрудно определить природу ионизирующихся элементов и их концентрацию. [c.33]

    Лаборатория радиоаналитических методов (И. П. Алимарин) проводит исследования в области радиоактивационного анализа и других радиоаналитических методов, электрохимических методов, ультрамикрохимии, соосаждения с неорганическими носителями, рентгеновского микроанализа. Уникальны работы по ультрамикрохимическому анализу, это одна из очень немногих лабораторий такого профиля в СССР и за рубежом. По техническому заданию лаборатории созданы ультрамикровесы, позволяющие брать навески до 0,5 мг. В лаборатории разработано много нейтронно-активационных методов анализа чистых веществ в свое время именно эта лаборатория была пионером внедрения радиоактивационного метода в Советском Союзе. Работы по рентгеновским методам сосредоточены преимущественно в направлении развития локального анализа как по первичному излучению, так и во флуоресцентном варианте. Делаются попытки разработать безэталонные методы рентгеновского анализа. [c.200]

    Подобные же заключения относительно качественного и количественного состава анализируемого вещества можно делать на основе рентгеновских вторичных (флуоресцентных) спектров, которые возникают при облучении анализируемого вещества не электронами, а рентгеновскими лучами более высокой энергии (т. е. более короткой длины волны), чем характеристическое рентгеновское излучение элементов, входящих в состав анализируё-мого образца (рентгеновский флуоресцентный анализ). Для воз-.буждения рентгеновской флуоресценции применяют рентгеновскую трубку с вольфрамовым анодом. При этом каждый возбуждаемый элемент в образце испускает излучение тех же самых частот, которые наблюдались бы, если он являлся анодом рентгеновской трубки. [c.143]

    ЛЮМИНОФОРЫ (лат. lumen — свет и греч. phoros — несущий) —вещества, способные преобразовывать поглощаемую ими энергию в световое излучение. Л. бывают неорганическими и органическими. Свечение неорганических Л. (кристаллофосфоров) обусловлено в большинстве случаев присутствием посторонних катионов, содержащихся в малых количествах (до 0,001%) (напр., свечение сульфида цинка активируется катионами меди). Неорганические Л., применяются в люминесцентных лампах, электронно-лучевых трубках, для изготовления рентгеновских экранов, как индикаторы радиации и др. Органические Л. (люмогены) применяются для изготовления ярких флуоресцентных красок, различных люминесцентных материалов, используются в люминесцентном анализе, в химии, биологии, медицине, геологии и криминалистике. [c.150]

    На зависимости интенсивности линии рентгеновского эмиссионного спектра от концентрации соответствующего элемента основан рентгеновский флуоресцентный аиализ (РФА), к-рый широко используют для количеств, анализа разл. материалов, особенно в черной и цветной металлургии, цементной пром-сти и геологии. При этом используют вторичное излучение, т.к. первичный способ возбуждения спектров наряду с разложением в-ва приводит к плохой воспроизводимости результатов. РФА отличается экспрессностью и высокой степенью автоматизации. Пределы обнаружения в зависимости от элемента, состава матршц, и используемого спектрометра лежат в пределах 10" -10 %. Определять можно все элементы, начиная с Mg в твердой или жидкой фазе. [c.240]

    СПЕКТРАЛЬНЫЙ АНАЛИЗ, метод качеств, и количеств, определения состава в-в, основанный на исследовании их спектров испускания, поглощения, отражения и люминесценции. Различают атомный и молекулярный С. а., задачи к-рых состоят в определении соота. элементного и молекулярного состава в-ва. Эмиссионбый С. а. проводят по спектрам испускания атомов, ионои или молекул, возбужденных разл. способами, абсорбционный С. а.-по спектрам поглощения электромагн. излучения аиализнруем1>1ми объектами (см. Абсорбционная спектроскопия). В зависимости от цели исследования, св-в анализируемо о в-ва, специфики используемых спектров, области длин волн и др. факторов ход анализа, аппаратура, способы измерения спектров и метрологич. характеристики результатов сильно различаются. В соответствии с этим С. а. подразделяют на ряд самостоят. методов (см., в частности, Ато.мно-абсорбционный анализ. Атомно-флуоресцентный анализ, Инфракрасная спектроскопия, Комбинационного рассеяния спектроскопия, Люминесцентный анализ. Молекулярная оптическая спектроскопия. Спектроскопия отражения, Спектрофотометрия, Ультрафиолетовая спектроскопия, Фотометрический анализ, Фурье-спектроскопия, Рентгеновская спектроскопия). [c.392]

    Качественный анализ с помощью РФС в принципе очень прост и основан на точном измерении энергии или длины волны наблюдаемых флуоресцентных линий. Так как спектрометры РФСВД работают последовательно, необходимо проводить сканирование 20. Идентификация следов элементов может осложняться наличием отражений более высокого порядка или сателлитных линий основных элементов. В РФС с энергетической дисперсией полный рентгеновский спектр может быть получен одновременно. Идентификация пиков, однако, затруднена из-за более низкого разрешения спектрометра с ЭД. Программное обеспечение для качественного анализа помогает спектроскописту, показьшая маркеры KLM на спектре. Маркеры KLM показывают теоретическое положение К-, L- и М-линий элемента как вертикальные линии. Когда эти линии совпадают с наблюдаемыми максимумами пиков в спектре, элемент идентифицируют положительно (как это принято в атомной эмиссии). [c.83]

    Остальная часть процедуры количественного анализа в целом одинакова для РФСЭД и РФСВД. Преобразование интенсивности в концентрацию затрудняется так называемым влиянием основы . Действительно, первичное рентгеновское излучение, отвечающее за создание вакансий в атоме определяемого элемента, ослабляется по мере прохождения через пробу. Точно так же флуоресцентное рентгеновское излучение, образующееся в пробе на определенной глубине, будет ослабляться на его пути к детектору. В первом приближении концентрация элемента г пропорциональна скорости счета 1 и обратно пропорциональна массовому коэффициенту ослабления основы / о для этой линии  [c.84]

    Впервые включены флуоресцентные методы анализа (при облучении рентгеновскими лучами). Однако авторы дали лишь необходимую информацию об этих методах с целью показать их преимущества по сравнению со мйоги-ми другими, приведенными в этой книге. [c.9]

    Флуоресцентный рентгеноспектральный метод анализа довольно сильно отличается от предыдущего метода принципом и используемой аппаратурой. Спектры флуоресценции возбуждаются при облучении образца в твердом виде или даже в растворе внешним источником рентгеновских лучей (запаянная рентгеновская трубка). Для этой же цели оказалось возможным использовать источники с радиоактивными изотопами, в частности Ти с его рентгеновским излучением с энергией 84 Кэв [333]. Спектры флуоресценции аналогичны первичным рентгеновским спектрам, но они недостаточно интенсивны, чтобы их можно было регистрировать фотографическим способом, поэтому в данном случае] применяют гейгеровские или пропорциональные счетчики квантов. [c.208]

    Чувствительность флуоресцентного анализа примерно того же порядка, как и чувствительность первичного рентгеновского способа, а продолжительность, в зависимости от сложности смеси, меняется от получаса до 4 час., причем время, требуемое для определения одного элемента (без подготовки пробы), не превышает 10мин., а быстрая смена образцов дает возможность проводить серийные анализы. [c.209]

    Цветная металлургия. На предприятиях цветной металлургии рентгеновские спектрометры используются в качестве датчиков химического состава продуктов производства. Одно из наиболее важных звеньев автоматизированного аналитического контроля — анализ пульпы руд и продуктов обогащения в потоке. Для этого используется аппаратура двух типов. Первый — спектрометры с волновой дисперсией, устанавливаемые в специально приспособленных помещениях. Анализируемая пульпа доставляется к приборам и прокачивается через кювету, в которой возбуждается флуоресцентное излучение в потоке материала (часто анализ ведется и по рассеянному рентгеновскому излучению). Второй тип прибора — погружные анализаторы, вводимые прямо в поток пульпы. Разработаны и применяются системы контроля, способные одновременно определять содержание свыше 30 элементов в диапазоне от кремшгя до урана и плотность пульпы в 64 потоках. [c.42]

    Рентгеновский флуоресцентный анализ [57, 66, 104, 776] применен для количественной оценки элементов, предварительно разделенных на катионите [1069], или при помощи хроматографии на бумаге (смесь Ga, In, Zr) [927], а также при анализе ар-сенидных сплавов, содержащих галлий [652], продуктов, полученных при извлечении галлия из углей [141, 142] и марганцевых руд [1270. В последнем случае определяют 10-з% Ga. [c.166]

    Люыинесцевтный (флуоресцентный) анализ использует свечение исследуемого объекта, возникающее под действием ультрафиолетовых лучей, рентгеновских или радиоактивных лучей (фотолюминесценция, рентгенолюминесценция, радиолюминесценция). Люминесцируют не все вещества, однако после обработки специальными реактивами люминесценция наблюдается у многих веществ (хемилюминесценция). Этот метод позволяет обнаруживать количества люминесцирующих примесей порядка 10 и даже 10 г. Люминесцентный анализ все шире применяют в сельском хозяйстве, биологии, медицине, в пищевой и фармацевтической промышленности. [c.327]


Библиография для Рентгеновский анализ флуоресцентный: [c.148]   
Смотреть страницы где упоминается термин Рентгеновский анализ флуоресцентный: [c.617]    [c.67]    [c.78]    [c.148]    [c.149]    [c.450]    [c.506]    [c.506]    [c.537]    [c.604]    [c.94]    [c.736]    [c.78]    [c.288]    [c.639]    [c.312]   
Химический энциклопедический словарь (1983) -- [ c.506 , c.507 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.506 , c.507 ]

Современная аналитическая химия (1977) -- [ c.22 , c.24 , c.100 , c.106 , c.131 ]




ПОИСК





Смотрите так же термины и статьи:

Флуоресцентный анализ

флуоресцентное



© 2025 chem21.info Реклама на сайте