Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярная генетика

    Биологическая роль нуклеиновых кислот начала выясняться в конце 40-х — начале 50-х годов нашего столетия, когда впервые было установлено, что ДНК, взятая у одной разновидности бактерий и введенная в другую разновидность, заставляет последнюю производить потомство с признаками, имеющимися у первой разновидности. Отсюда вытекало, что вместе с ДНК была перенесена наследственная информация — приказ строить белковые молекулы определенного типа. Эти работы стали исходной точкой быстрого прогресса в области молекулярной генетики. [c.343]


    С каждым годом все большее число разнообразных процессов микробиологического синтеза реализуется в промышленных условиях, Промышленная биотехнология становится новым перспективным направлением, открывающим необозримые горизонты использования продуктов биосинтеза микроорганизмов в народном хозяйстве. Увеличивается число биохимических заводов и комбинатов по производству уже освоенной продукции микробиологического синтеза — ферментных препаратов, витаминов, кормовых антибиотиков, аминокислот, микробиологических препаратов для борьбы с вредителями растений, кормовых дрожжей и др. Широким фронтом ведутся исследования по получению и технологии производства новых биологически активных препаратов, разрабатываемых с использованием современных достижений молекулярной генетики и генной инженерии. К перспективным задачам промышленной биотехнологии относится также реализация микробиологических процессов, направленных на решение энергетической проблемы, в том числе производство биогаза, топливного этанола, метана, топливного водорода с помощью фотосинтезирующих микроорганизмов и др. [c.3]

    В последние 10—15 лет ситуация в молекулярной биологии изменилась. После изучения биологических молекул как таковых, после расшифровки генетического кода, молекулярная биология обратилась к гораздо более сложным надмолекулярными и клеточным системам. Оказалось возможным подойти к проблемам, связанным с молекулярной генетикой эукариот, с явлениями онтогенеза. На этом этапе молекулярная биология отошла от теоретической и экспериментальной молекулярной фи-аики. Причины этого лежат в сложности процессов, изучаемых. [c.221]

    Практическое применение молекулярной биологии и молекулярной генетики успешно развивается в генной инженерии и биотехнологии. Эти области техники посвящены прежде всего-получению необходимых для медицины и сельского хозяйства белков и полипептидов, основанному на искусственном манипулировании генами. [c.221]

    Г-н. стала основой развития молекулярной генетики. Благодаря возможности клонирования чужеродных генов в бактериях, животных и растит, клетках (выделеньг клоны мн. генов рибосомной РНК, гистонов, интерферона и гормонов человека и животных и т. п.), Г. и. имеет прикладное значение. Она составляет, наряду с клеточной инженерией, основу совр. биотехнологии. С помощью методов Г. и. получены мн. иовые, иногда неожиданные данные, открыто, напр., мозаичное строение генов у высших организмов, изучены транспозоны бактерий и мобильные диспергированные элементы высших организмов, открыты онкогены и т.п. (см. Мигрирующие генетические элементы). [c.518]

    Задачи планирования сложных лабораторных экспериментов состоят в разработке плана достижения цели эксперимента, плана выполнения конкретных лабораторных опытов и использования необходимых приборов на основе анализа сущности изучаемых физико-химических явлений структуры и свойств исследуемого вещества, а также возможных физико-химических условий проведения опытов 7, 16]. Например, в молекулярной генетике при планировании экспериментов по клонированию генов необходимо составить план и выбрать конкретные опыты, обеспечивающие встраивание гена, кодирующего желаемый белок, в генетический аппарат бактерии, чтобы последняя воспроизводила такой ген. [c.36]


    Полинг Лайнус Карл (1901-1997), американский ученый, крупнейший специалист в области квантовой механики и строения молекул, теории химической связи, иммунохимии, структуры белков и молекулярной генетики. Иностранный член Российской Академии н к, один из инициаторов Пагуошского движения ученых за мир. Часть его книг переведена на русский язык Природа химической связи (М., Госхимиздат, 1947), Общая химия (М., Мир 1974) и др. [c.275]

    Молекулярная биология 3/210, 211, 212, 594 1/559 Молекулярная генетика 3/211  [c.653]

    Открытие рестриктаз и их применение в молекулярной генетике [c.781]

    Достижения в области молекулярной биологии и молекулярной генетики позволили биотехнологам начиная с 70-х годов прошедшего столетия перейти от слепого отбора штаммов мутантов к сознательному конструированию геномов, используя для этой цели прогрессивную технологию рекомбинантной ДНК. [c.34]

    Вплоть до середины XX в. развитие биологии происходило путем ступенчатой редукции - последовательного перехода от изучения более сложных биосистем к изучению менее сложных, в соответствии с субординационной структурной организацией живой природы. В своем движении от высшего к низшему, от функции к структуре биология, наконец, подошла к исследованию простейшего уровня биологических систем - их молекулярного "дна . С появлением молекулярной биологии и ее составной части - молекулярной генетики, наука обрела качественно новое представление о единстве, целостности и субординационной взаимосвязи [c.9]

    Ранее было отмечено, что структурная организация живой и неживой природы построена согласно принципам унификации и комбинации и включает явления трех типов. Оба принципа (редукционизма и холизма) оказались в основе научного поиска и нашли отражение в логике, как в науке о закономерностях и формах научного и философского мышления, так и в методе анализа индуктивного и дедуктивного способов рационалистической и эмпирической деятельности человека. На индуктивном способе мышления основывается разработка целого ряда научных дисциплин, например квантовой механики атомов и квантовой химии молекул. Фундаментальные положения этих наук базируются в основном на результатах изучения соответственно простейшего атома (Н) и простейшей молекулы (Н2), а также ионов Н , ОН . Тот же способ мышления в биологии лег в основу исследований, приведших к становлению и развитию формальной и молекулярной генетики, цитологии, молекулярной биологии, многих других областей. При дедуктивном способе мышления, ядро которого составляет силлогистика Аристотеля, новое положение выводится или путем логического умозаключения от общего к частному, или постулируется. Классическим примером дедукции может служить аксиоматическое построение геометрии. Мышление такого типа наглядно проявилось в создании периодической системы элементов - эмпирической зависимости, обусловливающей свойства множества лишь одним, общим для него качеством. Д.И. Менделеев установил, что "свойства элементов, а потому, и свойства образуемых ими простых и сложных тел стоят в периодической зависимости от их атомного веса" [21. С. 111]. Тот же подход лежит в основе построения равновесной термодинамики и статистической физики. Оба способа мышления, индуктивный и дедуктивный, диалектически связаны между собой. Они вместе присутствуют в конкретных исследованиях, чередуясь и контролируя выводы друг друга. [c.24]

    Применительно к белкам проблема самосборки является кардинальной. Генетически кодируется биосинтез (гл. 8), т. е. формирование первичной структуры белка. Однако биологически функциональна нативная пространственная структура белковой молекулы, возникающая в результате самосборки. Естественный отбор белков идет по пространственным — третичным и четвертичным — структурам. Молекулярная биология, молекулярная генетика не имели бы смысла, если бы между генетически предопределенной первичной структурой белка и его пространственным строением не было однозначного или вырожденного соответствия (см. 7.1). [c.108]

    Д. Тэйлор, в сб. Молекулярная генетика , т. I, Мир , 1964. [c.551]

    Молекулярная генетика человека [c.442]

    Э. Фриз, в сб. Молекулярная генетика , Мнр , 1964. [c.607]

    В первом издании мы описали принципы и применение молекулярной биотехнологии в широком биологическом контексте - в той форме, которая представлялась нам наиболее интересной и информативной. С тех пор мы получили много полезных замечаний от наших коллег, аспирантов и студентов из разных стран. Стараясь сохранить прежний подход и в то же время удовлетворить пожелания многих читателей, мы обновили, расширили и существенно переработали нашу книгу. Мы надеемся, что нам удалось передать ту волнующую атмосферу, в которой совершаются открытия в молекулярной биотехнологии, и в то же время ясно изложить ее основы, разъяснить смысл современных открытий и то, как их можно использовать для производства товаров и услуг . В книге появилась новая глава, где рассмотрены микроорганизмы, обычно использующиеся в молекулярной биотехнологии. Кроме того, отдельная глава посвящена описанию основ молекулярной биологии. Значительно расширены главы по молекулярной генетике человека, генной терапии, биотехнологии растений, охватывающие самые последние достижения в этих областях. Пересмотрены главы, посвященные диагностическим системам и вакцинам. Кроме того, примерно в 1,5 раза увеличено число рисунков и таблиц, обновлен и расширен словарь терминов. Как мы надеемся, это позволит [c.7]

    Биологическая роль нуклеиновых кислот начала выясняться в конце 40-х — начале 50-х годов, когда впервые было выяснено, что ДНК, взятая у одной разновидности бактерий и введенная в другую разновидность, заставляет последнюю производить потомство с признаками, имеющимися у первой разновидности. Отсюда вытекало, что вместе с ДНК была перенесена наследственная информация — каким-то образом закодированный приказ строить белковые молекулы определенного типа. Эти работы стали исходной точкой быстрого прогресса в области молекулярной генетики , приближающего нас к познанию процесса синтеза белка в клетках, размножения клеток путем деления и в конечном итоге воспроизведения всего сложного животного или растительного организма в том виде, который характерен для родителей этого организма. Подробное обсуждение этих проблем увело бы нас далеко в область биохимии, в общих же чертах роль ДНК и РНК выглядит следующим образом. Молекулы ДНК находятся в клеточных ядрах, они содержат наследственную информацию в виде различной последовательности нуклеотидов. ДНК играет роль матрицы , с которой отпечатываются копии молекул РНК, непосредственно участвующих в синтезе белков. Таким образом, молекулы РНК служат передатчиками от ДНК к местам клетки, где непосредственно осуществляется синтез белка. Роль РНК в процессе синтеза белка была подтверждена опытами, выполненными в начале 60-х годов М. Ниренбергом и Д. Матеи. [c.351]


    Книга Молекулярная биотехнология принципы и применение написана как учебник по биотехнологии, технологии рекомбинантных ДНК и генной инженерии. В ее основу положен курс лекций по биотехнологии, который мы читали на протяжении 12 лет студентам старших курсов и аспирантам биологических и инженерных специальностей Университета Ватерлоо. Книга предназначена для студентов, знакомых с основами биохимии, молекулярной генетики и микробиологии, хотя мы понимаем, что вряд ли они успели освоить все эти дисциплины до того, как начали заниматься биотехнологией. Поэтому, приступая к изложению той или иной темы, мы сначала рассматриваем ее основы и лишь затем переходим к деталям. [c.9]

    Очень редко новые научные дисциплины возникают на пустом месте как правило, их фундаментом служат различные области науки. Что касается молекулярной биотехнологии, то ее биотехнологическая составляющая относится к сфере промышленной микробиологии и химической инженерии, а молекулярная - к областям молекулярной биологии, молекулярной генетики бактерий и энзимологии нуклеиновых кислот (табл. 1.1). В широком смысле молекулярная биотехнология пользуется достижениями самых разных областей науки и применяет их для создания самых разных коммерческих продуктов (рис. 1.2). [c.19]

    Экспертная система MOLGEN [7] помогает генетику при планировании экспериментов по клонированию генов в молекулярной генетике. Эти эксперименты состоят из встраивания гена, кодирующего желаемый белок, в генетический аппарат бактерии, чтобы эта бактерия воспроизводила такой ген. Система использует знания по генетике и задачу, поставленную пользователем, для разработки общего плана и дальнейшего его превращения в последовательность конкретных лабораторных опытов. MOLGEN использует объектно-ориентированное программирование, а также ФР моделей и стратегию управления. ЭС реализована на языках ЛИСП и UNITS. [c.264]

    Закономерности, управляющие развитием организмов, которое сопровождается сложной последовательной дифференцировкой тканей и формообразованием, остаются загадкой. Один из путей их исследования основывается на молекулярном анализе структуры и экспрессии генов, отвечающих за критические этапы развития диф-ференцировки и морфогенеза. Лишь немногие организмы, как, например, D. melanogaster, пригодны для исследования развития методами молекулярной генетики, поскольку гены, контролирующие развитие, можно выявить лишь тогда, когда хорошо разработана генетика объекта исследования. [c.212]

    Молекулярная генетика развития делает свои первые шаги. Выявлены и клонированы гены, определяющие ключевые стадии развития. Начаты исследования особенностей пространственного распределения транскриптов генов и их продуктов в развитии эмбриона. Изучаются регуляторные элементы этих генов, в том числе те, от которых зависят закономерности пространственной экспрессии. Выявление гомеоблока, входящего в состав разных генов развития, позволило на.метить подходы к исследованию генов, контролирующих развитие у разных организмов. Обнаружены белки, кодируемые этими генами и взаимодействующие с ДНК. Однако решение сложной задачи расшифровки законов, по которым строится трехмерная структура организма, еще впереди. [c.218]

    Настоящий сборник преимущественно состоит из работ, выполненных в Лаборатории теоретичесокй молекулярной генетики Теоретического отдела ИЦиГ СО АН СССР. При формировании сборника мы избегали включения в его состав работ, посвященных описанию пакетов программ, выполняющих рутинные функции анализа молекулярно-генетических данных. Вместо этого акцент был сделан на описание таких компьютерных систем, которые ориентированы на глубокое исследование содержательных проблем в различных областях молекулярной биологии и генетики [c.6]

    Заведупций лабораторией теоретической молекулярной генетики теоретического [c.8]

    Описанная выше экспертная система для автомаческого проиэ-юдства новых знаний "о взаимосвязях между первичными и топологическими структурами белков" реализована в лаборатории теоре-[нческой молекулярной генетики ИЦиГ СО АН СССР [261. [c.185]

    ГЕНЕТИЧЕСКАЯ ИНЖЕНЕРИЯ (ленная инженерия), создание с помощью биохим. и (или) хим. синтеза генетач. структур, способных размножаться и действовать в клетке-хозяине, изменять ее генетич. программу и синтезировать требуемые продукты, обычно белки. Возникла в 1972, когда была получена первая такая структура. Будучи новым этапом развития молекулярной генетики, Г. и. использует достижения микробиологии, биохимии, биоорг. химии и молекулярной биологии. [c.518]

    По истокам своего развития М.б. неразрывно связана с молекулярной генетикой (наука, изучающая структурно-функцион. организацию генетич. аппарата клеток и механизма реализации иаследств. информации), к-рая продолжает составлять важную часть М. б., хотя и сформировалась уже в значит, мере в самостоят. дисциплину. Именно в этой области были достигнуты результаты, к-рые способствовали развитию М. б. и восприятию ее принципов. [c.110]

    ТРАНСФОРМАЦИЯ (от лат. transfonnatio-превращение), в молекулярной генетике, изменение наследственных св-в клеток в результате проникновения в них чужеродной ДНК. [c.625]

    В настоящее время, когда эта цель достигнута, наступил период реализации приобретенного научного потенциала в изучении структурнофункциональной организации белков и в прикладных исследованиях. Сфера последних - почти все разделы молекулярной биологии и молекулярной генетики, а также фармакология, эндокринология и многие другие области научной медицины. Поэтому требуется разработка нового метода, который не уступал бы точности и надежности первого, но обладал бы большей эффективностью и автоматизмом. [c.591]

    Рис. 66. Электронные микрофотографии рибосомных 50S субчастиц, прореагировавших с антителами а —антитела против белка L7 / L12 (по W. А. Stry harz et al. V-Mol. Biol., 1978, V. 126, p. 123-140) оригинал предоставлен д-ром Дж. Лейком, Калифорнийский университет, Лос-Анджелес) б —антитела против белка L1 (предоставлено д-ром Г. Штоффлером, Институт молекулярной генетики им. М. Планка, Зап. Берлин) в — антитела против 5S РНК-белкового комплекса SOS частицы видны, с их выпуклой ( задней ) стороны (предоставлено В. Д. Васильевым, Институт белка АН СССР, Пущино) [c.111]

    О возможности молекулярного истолкования поведения подобных систем уже свидетельствуют некоторые результаты ис-следоаания молекулярных регуляторных систем, например опе-рона в молекулярной генетике или биохимических реакций, катализируемых аллостерическими ферментами (см. ниже гл. 7). [c.51]

    Книга состоит из четырех частей. В первой из них четко и ясно изложены основы молекулярной биологии, во второй речь идет о молекулярной биотехнологии микроорганизмов, в третьей - о биотехнологии эукариотических систем, Б том числе человека (молекулярная генетика человека и генная терапия). Особый интерес для российского читателя представляет четвертая часть, посвященная контролю и патентованию в области молекулярной биотехнологии. Эти вопросы почти не затрагиваются ни в учебниках, ни в образовательном процессе в нашей стране, хотя в биотехнологии, как и в любой прикладной науке, новые разработки дают дивиденды только в том случае, когда они защищены патентом. Авторы обсуждают законодательную базу использования генноинженерных продуктов в пищевой и фармацевтической промышленности, применения рекомбинантных организмов в сельском хозяйстве, нормативные акты, относящиеся к предварительным испытаниям этих организмов, требования, предъявляемые к ним при крупномасштабном применении. Детально рассматриваются правила патентования впервые секвениро- [c.5]


Смотреть страницы где упоминается термин Молекулярная генетика: [c.185]    [c.14]    [c.9]    [c.14]    [c.129]    [c.220]    [c.104]    [c.544]    [c.129]    [c.133]    [c.220]    [c.604]    [c.50]    [c.372]    [c.419]   
Химический энциклопедический словарь (1983) -- [ c.346 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.346 ]

Молекулярная генетика (1974) -- [ c.31 , c.34 ]




ПОИСК





Смотрите так же термины и статьи:

Век генетики

Генетика



© 2025 chem21.info Реклама на сайте