Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эмбрион, развитие

    Так как /2 > /ь очевидно, что А /> /1 — Аг/]. Информация черпается открытой системой из окружающей среды, энтропия которой возрастает. Организм, растущий из зиготы, подобен в этом смысле кристаллу, растущему из зародыша, помещенного в насыщенный раствор. В обоих случаях возрастание упорядоченности, возрастание количества информации, перекрывается увеличением энтропии окружающей среды — холодильника при кристаллизации. Концепция Эльзассера виталистична неявным образом предполагается несоблюдение второго начала в живой природе. Равен, подвергший критике идеи Эльзассера, считает, что во всех клетках организма содержится одна и та же генетическая информация. Развитие организма означает не увеличение количества информации, но увеличение избыточности, т. е. многократное ее повторение [31]. Равен трактует зиготу как канал связи, причем родительские организмы служат источником информации, а вырастающий организм — ее приемником. Развитие сводится к декодированию информации. Равен исходит из возможности абсолютной оценки количества информации в зиготе и организме. В действительности, как показал Аптер [32] (см. также [33, 57]), такая оценка всегда относительна и условна. Тождество генов в клетках организма не означает избыточности. Развитие есть результат взаимодействия различных частей эмбриона, информация содержится не только в хромосомах, но и во всех внутри- и межклеточных взаимоотношениях. Концепции преформизма и эпигенеза в сущности непригодны для описания развития, которое нельзя свести к увеличению или сохранению количества информации. Задача состоит не в таком описании, но в выяснении сущности развития, его физической природы, его атомно-молекулярных основ. [c.34]


    Модуляцию под влиянием соседних клеток можно проиллюстрировать на примере кожи. У эмбриона развитие эпидермиса (эктодермы) регулируется лежащей под ним эмбриональной дермой (разд. 15.7.2). Но, может быть, эго взаимодействие-преходящее, чисто эмбриональное явление, которое оставляет лишь след в памяти клеток взрослого организма Или же оно продолжается в течение всей жизни Чтобы ответить на этот вопрос, нужно провести со зрелыми тканями опыты, подобные тем, которые проводились на эмбрионах. Например, можно объединить эпидермальный слой кожи с одного участка тела, скажем с уха, и дермальный слой другого участка, такого как подошва ноги, где кожа заметно отличается по своему строению. Оказывается, и здесь, так же как у эмбриона, дерма определяет поведение эпидермальных клеток прт контакте с дермой стопы эпидермис, взятый с уха, становится толстым и грубым, как эпидермис подошвы. Таким образом, местная специализация эпидермиса регулируется с помощью локальных сигналов, идущих от дермы, и эта связь постоянно действует во взрослом организме [c.135]

    Интенсивность процесса обмена веществ у высших организмов зависит от возраста организма чем моложе организм, тем больше он содержит воды и тем интенсивнее его обмен веществ. Например, эмбрион человека ко второму месяцу развития содержит 97% воды, новорожденный ребенок — 74%, организм взрослого человека содержит 63—68% воды. Та же закономерность проявляется и в отношении отдельных тканей и органов животного организма особенно богаты водой те органы, которые наиболее интенсивно функционируют. Так, сердце высших животных содержит 79% воды, а скелет —всего лишь 20—40 /о- [c.46]

    Применение гормонов насекомых (обычно с помощью опрыскивания) основано на том, что они чаще всего вызывают у насекомых нарушение физиологических процессов, связанных с ростом и развитием эмбрионов и личинок, нарушения механизмов превращения в зрелую особь или нарушения в развитии репродукционных органов. [c.324]

    Третья линия данных в пользу существования внутренних программ развития вытекает из тщательно проведенных эмбриологических исследований. В частности, показано, что у куриного эмбриона зачаток конечности (длина которого равна сумме диаметров 20 клеток) содержит клетки, совершенно автономно дифференцирующиеся в дальнейшем в отдельные элементы органа. Если эту зону развития с одного зачатка конечности перенести на второй симметричный зачаток, то там разовьется конечность, содержание костных и хрящевых элементов в которой будет в два раза больше нормального [179]. [c.361]

    Важный метаболит эстрогена, влияет на развитие эмбриона. [c.186]

    Предложенные модельные описания механизма свертывания белка неполны, непоследовательны и противоречивы. Они, по существу, не отвечают ни на один из принципиальных вопросов, возникающих при изучении уникального в природе молекулярного явления самопроизвольного зарождения и развития порядка из хаоса. Для приближения конечных результатов теоретического рассмотрения процессов сборки к наблюдаемым экспериментальным данным в расчеты привносятся (без объяснения причин и механизма возникновения) никак не следующие из статистической физики и равновесной термодинамики представления об эмбрионах, ядрах и нуклеациях или вводятся известные из опыта структурные элементы нативных конформаций белков, как правило, (Х-спирали и р-складчатые листы. [c.83]


    Эмбриональная мышечная ткань по своему химическому составу значительно отличается от скелетной мускулатуры взрослых особей. В мышцах эмбрионов больше воды, чем в функционально зрелой мускулатуре. Соответственно общее содержание белка в мышечной ткани эмбрионов в пересчете на сырую ткань оказывается более низким, чем в мышцах животных того же вида в постнатальном периоде развития. По сравнению с мышцами взрослого организма в функционально незрелой мышце ниже содержание миофибриллярных белков (миозина и актомиозина) и выше—белков стромы, миоальбумина, а также глобулинов. По мере развития плода количество миофибриллярных белков увеличивается и возрастает АТФазная активность в мышечных экстрактах. [c.653]

    Инокулированные оплодотворенные яйцеклетки имплантируют в реципиентную женскую особь (поскольку успешное завершение развития эмбриона млекопитающих в иных условиях невозможно). [c.418]

    Самые ранние стадии развития дрозофилы, когда устанавливаются так называемые пространственные координаты эмбрионов, определяющие передний и задний или брюшной и спинной отделы, контролируются группой генов матери. Эти гены функционируют-на стадии образования яйца, и их продукты неравномерно распределяются по яйцеклетке. Предполагается, что материнские гены и нх продукты обеспечивают позиционную информацию, которая воспринимается генами, работающими после оплодотворения, в зиготе. Представление о наличии в цитоплазме яйца позиционной информации, определяющей направление развития групп эмбриональных клеток, подчеркивает роль взаимного влияния частей будущего эмбриона в развитии, но никак не вскрывает природы этих взаимодействий. Мутации в генах, определяющих структуру неоп-лодотворенного яйца, оказывают так называемый материнский эффект, нарушая развитие эмбриона. Например, структуры, свойственные данному району, заменяются иными, характерными для других районов развивающегося организма. Вероятно, такие материнские гены оказывают свое действие на стадии ядерного синцития, до образования клеток бластодермы, когда диффузия продуктов генов затрудняется в результате образования клеточной мембраны. Транскрипты таких генов локализуются в соответствующих отделах (например, переднем или заднем) неоплодотворенного яйца или развивающегося эмбриона. [c.214]

    Молекулярная генетика развития делает свои первые шаги. Выявлены и клонированы гены, определяющие ключевые стадии развития. Начаты исследования особенностей пространственного распределения транскриптов генов и их продуктов в развитии эмбриона. Изучаются регуляторные элементы этих генов, в том числе те, от которых зависят закономерности пространственной экспрессии. Выявление гомеоблока, входящего в состав разных генов развития, позволило на.метить подходы к исследованию генов, контролирующих развитие у разных организмов. Обнаружены белки, кодируемые этими генами и взаимодействующие с ДНК. Однако решение сложной задачи расшифровки законов, по которым строится трехмерная структура организма, еще впереди. [c.218]

    Процессы метилирования несомненно участвуют в инактивации одной из двух Х-хромосом в клетках млекопитающих. Неактивное состояние одной из двух Х-хромосом, возникающее в раннем развитии эмбриона, цитологически обнаруживается по наличию компактного гетерохроматического тельца Барра. Это неактивное состояние наследуется в клеточных поколениях, а реактивация Х-хромосомы происходит при образовании герминальных клеток. Путем деметилирования с помощью 5-азацитидина также удавалось активировать гены неактивной Х-хромосомы. По-видимому, инициация инактивации Х-хромосомы обеспечивается взаимодействием со специфическими белками, а метилирование — это вторичный процесс, закрепляющий неактивное состояние Х-хромосомы в последующих клеточных делениях. [c.220]

    На следующей стадии эмбрионального развития, свойственной многим беспозвоночным и амфибиям, на вегетативном полюсе бластулы появляется вдавление, которое постепенно углубляется таким образом формируется гаструла. На этой стадии развития у эмбриона четко различаются слои клеток эктодермы и энтодермы. Полость, образовавшаяся в процессе гаструляции и открывающаяся наружу, называется гастроцелем (археитероном) из нее в будущем сформируется желудочно-кишечный тракт, или энтерон. У лягушек образование гаструлы протекает более сложным образом, а у человека—не только еще более сложно, но и несколько иным путем. [c.356]

    Как мы уже видели, клетки постоянно получают химические сигналы как непосредственно от прилегающих клеток, так и через омывающие жидкости в ответ на это они высвобождают определенные соединения либо так или иначе меняют свойства своей поверхности. Возникает, однако, вопрос, могут ли в ходе такого межклеточного взаимодействия сформироваться 200 типов специализированных клеток, свойственных организму млекопитающих. Тот факт, что даже бактериальные клетки могут переключаться с одной программы развития на другую, делает такое предположение вероятным. У низкоорганизованных животных на определенном этапе развития яйцеклетки синтез ДНК выключается и в клетке начинают накапливаться большие количества РНК, которая используется в дальнейшем эмбриональном развитии. На ранних стадиях эмбрионального развития основную организующую роль играют такие факторы, как полярность яйцеклетки и градиент концентрации всех ее компонентов. Следовательно, ядра яйцеклеток отвечают на внешние стимулы таким образом, что обеспечивают исходную полярность эмбриона. На самых ранних стадиях развития процесс дифференцировки легко обратим. В дальнейшем же превращение дифференцированной клетки в клетку эмбрионального типа становится трудным или даже невозможным. Опыты Гёрдона (разд. В, 2 данной главы) показывают, что ядро дифференцированной клетки обычно (если не всегда) содержит весь генетический материал. Этому факту нисколько не противоречат многочисленные экспериментальные данные, свидетельствующие о том, что на ранних стадиях развития клетки, расположенные в разных частях зародыша, следуют различной внутренней генетической программе так, словно направление дифференцировки у иих предопределено. В некоторых случаях создается впечатление, будто заводятся некие часы развития , которые полностью определяют дальнейший ход дифференцировки. [c.360]


    Эритроидные стволовые клетки служат предшественниками содержащих гемоглобин эритроцитов. Вспомним (гл. 4, разд. Д, 7), что гемоглобины млекопитающих состоят из двух а-цепей и еще двух других цепей — либо , либо у, либо б, либо е. Гемоглобин взрослых в основном имеет структуру а2 2, но имеется также небольшое количество гемоглобина 0202. Для эмбриона на ранних стадиях развития характерен гемоглобин 0282, но на последующих стадиях е-цепи замещаются двумя другими, свойственными эмбриональному гемоглобину цепями, а именно °Y и Генетические исследования показали, что гены е-, у-, - и 6-глобина тесно сцеплены [188]. Почему же в отдельном эритроците присутствует гемоглобин только одного типа Видимо, дело в том, что для данного набора генов существует только один промотор. Если после каждого гена имеется сигнал-терминатор, то очевидно, что будет идти транскрипция только того гена, который ближе всех прилегает к промотору. В случае потери на каком-то этапе развития этого гена начнет транскрибироваться следующий ген и т. д. таким образом могут происходить нарастающие постепенные изменения в выражении гена в эритроцитах. Еще одна особенность процесса дифференцировки эритроцитов — это его чувствительность к гормону эритропоэти-ну, гликопротеидному гормону, образующемуся в почках [184—186]. Под действием эритропоэтина в дифференцирующих стволовых клетках начинается интенсивный синтез гемоглобина, и они окончательно превращаются в эритроциты [186а]. [c.364]

    Н. Гё, рассматривая возможные пути достижения промежуточного, активированного состояния, предполагает, что этой стадии предшествует образование зародышевых, эмбриональных структур [66]. В предложенной им модели, названной эмбрионуклеационной, возникновение эмбрионов происходит за счет ближних взаимодействий, которые могут быть как согласованными, так и не согласованными с дальними взаимодействиями, актуальными для отдельных нуклеаций и белковой глобулы в целом. В первом случае будет иметь место дальнейший рост эмбриона и переход его в стабильную локальную структуру (нуклеацию), а во втором -распад, При согласовании ближних и дальних взаимодействий Гё допускает два механизма свертывания цепи [18]. По одному из них, механизму миграционного развития, эмбрион развивается путем поверхностной сорбции остатков неупорядоченной области и слияния с соседними по цепи эмбрионами. По другому, диффузионно-коллизионному, предложенному М.Карплюсом и Д. Уивером [67], эмбриональный рост происходит в результате столкновения и последующей коагуляции двух (или более) эмбрионов, принадлежащих разным, далеко отстоящим участкам последовательности. Оба механизма не противоречат друг другу и, по-видимому, отражают разные стадии процесса сборки. Первый требует меньшей потери энтропии и поэтому предпочтителен в начальной фазе структурирования. Второй сопряжен со значительным ограничением конформационной свободы и может быть выгоден после создания стабильных эмбрионов, переходящих в нуклеации. Впрочем, П. Ким и Р. Болдвин усматривают в диффузионно-коллизионном механизме еще одну возможность объединения зародышевых форм [68]. Они предполагают, что соударения эмбрионов приводят к конформационным перестройкам, благоприятным для их объединения. [c.494]

    Для эмбриональной мышечной ткани характерно высокое содержание нуклеопротеинов, а также РНК и ДНК. По мере развития эмбриона количество нуклеопротеинов и нуклеиновых кислот в мышечной ткани быстро уменьшается. Высокоэнергетических соединений (АТФ и креатинфосфат) в функционально незрелой мышце значительно меньше, чем в мышцах зрелых особей. Имидазолсодержащие дипептиды (ансерин и карнозин) появляются в мышечной ткани в строго определенный период онтогенеза. Время появления этих дипептидов тесно связано с мышечной функцией и совпадает с формированием рефлекторной дуги, обеспечивающей возможность двигательного рефлекса, появлением Са -чувстви-тельности актомиозина и началом работы ионных насосов. Имеются также характерные особенности в ферментных и изоферментных спектрах эмбриональной мышечной ткани. Так, установлено, что в ходе онтогенеза изменяется изоферментный спектр ЛДГ. В экстрактах из скелетных мышц [c.653]

    Впервые возможность переноса ДНК при помощи микроинъекций в пронуклеус оплодотворенной яйцеклетки мыщи была проиллюстрирована Дж. Гордоном и др. В этом эксперименте в несколько сотен оплодотворенных яйцеклеток инъецировали плазмидный вектор pBR322, содержащий ген тимидинкиназы вируса простого герпеса (HSV) и часть генома обезьяньего вируса 40 (SV40). Из 78 потомков, рожденных приемными матерями, два содержали плазмидную ДНК. Авторы сделали вывод, что эти данные свидетельствуют о возможности использования рекомбинантных плазмид в качестве вектора для введения чужеродных генов непосредственно в эмбрионы мыщей, которые сохраняют эти гены в ходе развития . К сожалению, плаз- [c.428]

    В тестовых экспериментах из пула в 2470 ооцитов были получены два трансгенных теленка. Этот результат указывает на результативность описанного подхода, но также и на его низкую эффективность. Исследования в этой области продолжаются, и есть надежда на усовершенствование методики трансгеноза. Например, скоро появится возможность отбирать небольшое число клеток у развивающегося эмбриона in vitro и тестировать их на наличие трансгена такая потеря клеток эмбрионом не помещает его нормальному развитию. Этот тест позволит имплантировать только эмбрионы, несущие трансген. [c.433]


Смотреть страницы где упоминается термин Эмбрион, развитие: [c.73]    [c.315]    [c.201]    [c.215]    [c.356]    [c.357]    [c.128]    [c.224]    [c.251]    [c.347]    [c.355]    [c.201]    [c.215]    [c.653]    [c.419]    [c.427]    [c.433]    [c.439]    [c.529]    [c.163]    [c.325]    [c.325]    [c.99]    [c.353]    [c.224]    [c.251]    [c.347]   
Молекулярная генетика (1974) -- [ c.512 , c.518 ]




ПОИСК





Смотрите так же термины и статьи:

Аристотель теория информации о развитии эмбриона

Развитие эмбриона и плода



© 2025 chem21.info Реклама на сайте