Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Проблема белка

    Гидролиз белковых веществ. В жизненных процессах основную роль играют белковые вещества, поэтому проблема белков является одной из самых важных в органической химии. Белки составляют около 50% всех природных соединений по подсчету в жизненные процессы биосферы нашей планеты вовлечено 5 10 т протеинов (В. И. Вернадский). [c.539]


    Настоящий том, третий из намеченных монографий по проблеме белка, посвящен вопросам взаимосвязи между аминокислотной последовательностью, с одной стороны, и пространственным строением, динамическими конформационными свойствами и механизмом процесса свертывания беспорядочно флуктуирующей белковой цепи в нативную конформацию, с другой, т.е. - теоретическим аспектам структурной самоорганизации белка. Он является продолжением первых двух томов издания в которых были рассмотрены экспериментальные и концептуальные исследования химического и пространственного строения белковых молекул с момента возникновения работ в этих областях и по сегодняшний день. Автор подробно анализирует существующие представления о природе взаимоотношений между первичной и пространственной структурой белков, уделяя, естественно, особое внимание развиваемой им теории. [c.5]

    Попов Е М, Решетов ПД, Липкин В М и др. Проблема белка Т 1 Химическое строение белка М. Наука, 1995. [c.5]

    БИОСФЕРА, НАУЧНОЕ МЫШЛЕНИЕ И ПРОБЛЕМА БЕЛКА [c.9]

    Во все времена предпринимались попытки понять, что такое жизнь, почему существует живая и неживая природа, в чем причина особенностей растительных и животных организмов и неорганических тел, чем обусловлены постоянная изменчивость и эволюционное развитие органического мира на фоне кажущегося неизменным или даже деградирующим неорганического мира, есть ли между ними что-либо общее и, наконец, подчиняются ли оба мира единым законам. Вплоть до наших дней эти и многие другие вопросы, затрагивающие структурную организацию биосферы, а также научное мышление и различные аспекты проблемы белка, могли рассматриваться лишь на философском уровне или, в лучшем случае, на чисто эмпирической основе. Истинно научная постановка многих проблем стала возможной только сейчас, после возникновения обобщенного естествознания. Некоторые из перечисленных выше вопросов общего характера обсуждаются во введении, которое следует рассматривать идейным вступлением к изложению основного материала, посвященного теории и методу расчета молекулярной структурной организации природных аминокислотных последовательностей - центральной задаче проблемы белка. [c.11]

    ФУНДАМЕНТАЛЬНЫЕ ЗАДАЧИ ПРОБЛЕМЫ БЕЛКА [c.59]

    Естествен вопрос, что же сдерживало выявление структурных черт, общих для всего класса белков. Объясняется ли длительность поиска случайным стечением обстоятельств и трудностями технического порядка или же имелись субъективные причины и продолжительность и тернистость пройденного пути были неизбежны Ведь если сравнить формулы отмеченных природных соединений, то вряд ли белки покажутся значительно сложнее нуклеиновых кислот или сахаров. Скорее наоборот, тип их химического строения скорее может удивить своей простотой. Проблема белка, как и другие проблемы естествознания принципиального характера, имеет свою судьбу. Помимо субъективного фактора, решение здесь зависит от уровня теоретического и экономического развития фундаментальных наук и объема накопленных знаний, актуальных именно для данной проблемы. Проследим с этой точки зрения историю химических исследований белковых молекул. [c.60]


    Первая попытка решить вопрос о внутреннем устройстве белков была предпринята в конце 30-х годов XIX в. накануне становления органической химии. Следовательно, при этом исходили только из экспериментальных возможностей и теоретических представлений сложившейся к тому времени уже в качестве научной дисциплины минеральной (неорганической) химии. Предложенная на этой основе Г. Мульдером протеиновая теория оказалась, однако, несостоятельной и вскоре была отвергнута. Это не было только неудачей автора улучшить теорию было невозможно, так как она являлась неудовлетворительной в своих исходных позициях. Стало ясно, что неорганическая химия вообще некомпетентна решить первую фундаментальную задачу проблемы белка, и подобные попытки больше не повторялись. [c.60]

    Таким образом, к решению задачи химического строения белков присоединилась еще одна область естествознания - физика. С 1920-х годов белок становится объектом всесторонних химических, биологических и физических исследований, а проблема белка (в ту пору она сводилась, по существу, только к установлению химического типа белковых молекул) - проблемой всего естествознания. [c.66]

    Наконец, исследования структурной задачи проблемы белка с помощью эмпирического подхода объединяет единая стратегия поиска решения. Она заключается в том, чтобы на первом этапе предсказать, используя эмпирические корреляции, регулярные участки полипептидной цепи белка. Затем, оперируя идентифицированными фрагментами как [c.80]

    Если же обратиться к проблеме белка - главному предмету нашего рассмотрения, то приходится констатировать, что становление нелинейной неравновесной термодинамики прошло практически незамеченным для составляющих эту проблему задач, в том числе задачи структурной организации белковых молекул - исходной в логической цепочке, связывающей строение белка с его функцией и структурами надмолекулярных систем. Между тем предпринимаемые уже в течение трех десятилетий попытки подойти к решению вопроса, используя эмпирические подходы, равновесную термодинамику и формальную кинетику, неизменно терпят неудачу. Оставаясь нерешенной, структурная задача сдерживает рассмотрение всех последующих и создание теоретической молекулярной биологии - науки, столь же необходимой для понимания процессов жизнедеятельности, как молекулярная физика и квантовая химия для трактовки физических и химических свойств органических и неорганических низкомолекулярных соединений. А. Сент-Дьердьи писал "Мы действительно приблизимся к пониманию жизни только тогда, когда наши знания обо всех структурах и функциях на всех уровнях - от электронного до надмолекулярного - сольются в единое целое", и далее "...одним из основных принципов жизни является организация мы понимаем под этим, что при объединении двух вещей рождается нечто новое, качества которого не адекватны и не могут быть выражены через качества составляющих его компонентов" [37. С. 11-12]. [c.89]

    Физическая теория пространственной организации белка, определяемая сформулированными выше принципами, является дальнейшим развитием рассмотренной ранее термодинамической теории. В нее привнесены отсутствующие у последней конкретные, детерминистические признаки структуры белка, связывающие конформационное поведение макроскопической системы со свойствами ее микроскопических составляющих. Термодинамическая теория является феноменологической. Она была призвана установить природу самоорганизации белка (и, действительно, установила, что сборка полипептидной цепи представляет собой статистико-детерминистический процесс), отнести рассматриваемое явление к адекватной его природе области естественнонаучных знаний (нелинейной неравновесной термодинамике) и дать качественно непротиворечивую трактовку всем важнейшим особенностям этого явления (спонтанному характеру, беспорядочно-поисковому механизму, высокой скорости и безошибочности). Физическая теория, в отличие от термодинамической, является не качественной, а количественной теорией, и должна послужить основой метода численного решения конформационной проблемы белка. Метод, опираясь на физическую модель, строится на поэтапном подходе и анализе конкретной белковой молекулы, нативная конформация которой предполагается самой предпочтительной по энергии, наиболее компактной и согласованной в отношении всех внутри- и межостаточных взаимодействий структурой. [c.106]

    Разработка правильной теории, доказательство применимости механической модели к природным макромолекулам и создание соответствующего метода исследования все еще не гарантируют решения структурной проблемы белков. Расчет пространственного строения беспрецедентных по своей сложности белковых молекул, исходя только из знания их химического строения, может оказаться несостоятельным по чисто физическим и математическим причинам. Воздвигаемое здание может рухнуть из-за несовершенства потенциальных функций и параметризации методов Минимизации энергии многоатомных систем по многим переменным, алгоритмов и профамм счета на ЭВМ, накопления ошибок и многих других вопросов, не предполагаемых в начале поиска решения, а возникаю-.Щих, как правило, неожиданно. Особенность рассматриваемой проблемы структурной организации белка заключается еще и в том, что все [c.107]


    О последних усилиях в этом направлении можно узнать в работах [150, 151]. Подавляющее большинство теоретических разработок структурной проблемы белка исходит сейчас из предположения о том, что его активная пространственная форма обладает абсолютным минимумом свободной энергии. [c.240]

    Низкомолекулярные пептиды, в частности пептидные гормоны, как правило, наделены несколькими функциями. В этом отношении они отличаются от белков, которые, за редким исключением, монофункциональны, физиологическое действие отдельного природного пептида часто проявляется в совершенно различных системах организма и по своему характеру настолько разнообразно, что в такой сложной картине подчас трудно увидеть стимулирующее начало одного соединения и обнаружить между многими активностями пептида какую-либо связь. Несмотря на сложность функционального спектра, механизмы всех физиологических действий пептида совершенны по своей избирательности, чувствительности и эффективности. Поэтому при изучении конкретной функции возникает представление о молекулярной структуре пептида как о специально предрасположенной для выполнения только единичного рассматриваемого действия. Природным олигопептидам присуща согласованность двух на первый взгляд взаимоисключающих качеств - полифункциональности и строгой специфичности. Подход к установлению количественной зависимости между строением и биологической активностью олигопептидов, детально рассматриваемый в следующем юме монографии "Проблема белка", включает решение двух структурных задач, названных автором данной монографии [28] прямой и обратной. Прямая задача заключается в выявлении всех низкоэнергетических конформационных состояний природного олигопептида, которые потенциально, как будет показано, являются физиологически активными. Эта задача требует знания только аминокислотной последовательности молекулы и решается на основе теории и расчетного метода, использованных уже в анализе структурной организации многих олигопептидов. Обратная структурная задача по своей постановке противоположна первой. Ее назначение заключается в априорном предсказании химических модификаций природной последовательности, приводящих к таким искусственным аналогам, каждый из которых имеет пространственное строение, отвечающее конформации, актуальной лишь для одной функции исходного соединения. Конечная цель решения обратной задачи, таким образом, состоит в прогнозировании монофункциональных аналогов, которые бы только в своей совокупности воспроизводили полный набор низкоэнергетических конформаций природного пептида и весь спектр его биологического действия (подробно см. гл. 17). [c.371]

    Сформулированные принципы структурной организации природных олигопептидов являются необходимой основой для решения задачи структурно-функциональной организации этих соединений, обсуждаемой в следующем томе. Сейчас же важно отметить, что установление таких принципов подвело наше рассмотрение непосредственно к самому ответственному моменту исследования одной из фундаментальных задач проблемы белка - завершающему этапу изучения структурной организации белковых молекул и к решению вопроса о возможности априорного расчета их нативных трехмерных структур на основе известной аминокислотной последовательности, предложенной автором теории и разработанного им метода расчета. Перед обсуждением результатов конформационного анализа белков и количественной оценки функций дальних взаимодействий еще раз напомню о роли ближних и средних взаимодействий в структурной организации олигомерной аминокислотной последовательности. [c.403]

    Перечисленные особенности корреляционных методов предсказания Неизбежны при эмпирическом подходе. Отказ от одного из них равносилен отказу от решения подобным образом структурной проблемы белка. [c.519]

    Попов В М, Демин В В, Шибанова ЕД Проблема белка Т 2 Пространственное строение белка. М Наука, 1996 [c.5]

    К середине 1940-х годов пептидная теория белков Фишера и Вальд-шмидт-Лейтца была почти повсеместно принята. Встал вопрос о точном знании деталей химического строения, т.е. о конкретном порядке расположения аминокислот в белковых цепях. Впервые такое сложное исследование удалось провести в течение десятилетия (1945-1954 гг.) ф. Сенгеру, определившему аминокислотную последовательность инсулина. Вторым белком была рибонуклеаза А. Полная структура этого фермента расшифрована С. Муром, К. Хирсом и У. Стейном (1960 г.). Вскоре идентификация химичекого строения белков стала производиться с помощью автоматических секвенаторов и приобрела рутинный характер. Однако достижения в решении первой фундаментальной задачи проблемы белка не принесли удовлетворения. Сначала не вызывало сомнений, что химические и физические свойства белков получат свое объяснение, как только станет известно химическое строение их молекул. Однако основанная на опыте всей органической химии и биохимии надежда на то, что установление химического типа и строения молекул окажется достаточным для понимания хотя бы в общих чертах их специфического функционирования, не оправдалась. Тем самым определение структуры из конечной цели исследования превратилось в необходимый для последующего изучения белков начальный этап. Утвердилась мысль, что химическая универсальность и практически необозримое многообразие свойств соединений этого класса при строгой специфичности его отдельных представителей связаны с особенностями пространственных структур белковых молекул. [c.67]

    Исследование процесса ренатурации барназы Ферштом и соавт. [31-33] (как и панкреатического трипсинового и ингибитора Крейтоном [29, 30]) подробно изложено во втором томе издания "Проблема белка" [2. Ч. III]. Анализ результатов привел к заключению, что первая попытка воссоздать на уровне отдельных аминокислотных остатков количественную картину всего пути свертывания белка, не содержащего дисульфидные связи, не достигла желаемой цели. Декларированный Ферштом порядок ренатурации не является неизбежным следствием объективного рассмотрения, а представляет собой один из многих правдоподобных вариантов. Принципиальное возражение заключается в несоответствии равновесной термодинамики и формальной кинетики - теоретической основы эмпирического подхода Фершта - сугубо неравновесному характеру процесса структурной самоорганизации белка. [c.88]

    При поиске решения структурной проблемы белка особенно вдохновляющими примерами явились результаты теоретических исследований Л. Полинга и Р. Кори регулярных структур полипептидов [53] и Дж. Уотсона и Ф. Крика двойной спирали ДНК [54]. В этих работах с помощью простейшего варианта конформационного анализа - проволочных моделей, получивших позднее название моделей Кендрью-Уотсона, а также ряда экспериментальных данных, прежде всего результатов рентгеноструктурного анализа волокон (в случае ДНК еще и специфических соотношений оснований Э. Чаргаффа), удалось предсказать наиболее выгодные пространственные структуры полимеров. Собственно, предсказана была как в случае пептидов, так и нуклеиновых кислот, геометрия лишь одного звена, которое в силу регулярности обоих полимеров явилось трансляционным элементом. Белок же - гетерогенная аминокислотная последовательность, и поэтому таким путем предсказать его трехмерную структуру нельзя. Но то обстоятельство, что простейший, почти качественный, конформационный анализ привел к количественно правильным геометрическим параметрам низкоэнергетических форм звеньев, повторяющихся в гомополипептидах и ДНК, указывало на большие потенциальные возможности классического подхода и его механической модели в описании пространственного строения молекул. [c.108]

    В исследовании взаимодействий полифункциональных гормонов и рецепторов с привлечением синтетических аналогов не исключены ситуации (они не предсказуемы, поскольку выбор аналогов, как правило, случаен), когда наиболее предпочтительная конформация синтетического пептида стерически комплементарна активному центру рецептора, но необходимый комплекс тем не менее не образуется, так как модифицированная последовательность не содержит остатков, необходимых для образования эффективных контактов с функциональными группами рецептора. Возможен, конечно, и прямо противоположный случай, приводящий к тому же результату. Принципиально слабым местом в используемом в настоящее время подходе к установлению зависимости между структурой и функцией пептидов и, в частности, гормонов является то, что он базируется на случайном поиске синтетических аналогов методом проб и ошибок Поэтому, отдавая должное усилиям в экспериментальном и теоретическом изучении искусственно модифицированных последовательностей энкефалинов, следует сказать, что при существующем интуитивном выборе модельных соединений можно рассчитывать лишь на частный успех. Качественный прогресс здесь можно ожидать только при строго научном, а не случайном подборе аналогов, иными словами, при отходе от метода проб и ошибок к методу, обладающему предсказательными возможностями и доказательной силой. Первая попытка в этом направлении [28, 29] основывается на решении обратной структурной задачи, т.е. на сознательном, целенаправленном конструировании химического строения немногочисленных искусственных аналогов, пространственное строение которых в своей совокупности отвечает набору низкоэнергетических, физиологических активных состояний природного гормона (см. гл. 17). Детально структурнофункциональная организация природных пептидов будет обсуждена в следующем томе издания "Проблема белка". О первых успехах рентгеноструктурного анализа в изучении трехмерных структур рецепторов рассказывается во втором томе издания [98. Гл. 3, 4]. [c.353]

    Одно из главных положений теории пространственной организации белков состоит в предположении о наличии в нативных конформациях макромолекул согласованности ближних, средних и дальних взаимодействий (см. часть II). На этом утверждении строится поэтапный подход к априорному предсказанию трехмерных структур природных полипептидов, поскольку только при гармонии в белковой глобуле всех внутриостаточных и межостаточных невалентных взаимодействий атомов становится возможным и оправданным разделение конформационной проблемы белка на ряд связанных между собой менее громоздких проблем и их последовательное решение. Это же положение отражает суть термодинамической бифуркационной теории свертывания белковой цепи, объясняющей возможность, направленность и предел протекания по беспорядочно-поисковому механизму спонтанного, нелинейного неравновесного процесса сборки высокоорганизованной пространственной структуры из флуктуирующей полипептидной цепи. [c.413]

    Выводы подобной направленности, предостерегающие от бесплодных поисков простых решений структурной проблемы белка, в литературе почти отсутствуют. Да и процитированное только что высказывание вскоре было дезавуировано одним из авторов в его работе с Немети, где написано о достоверности статистических предсказательных алгоритмов нечто противоположное "Приложение этих параметров к белкам с известными аминокислотными последовательностями дает вероятные конформационные состояния, которые могут быть использованы в качестве исходных для минимизации энергии.. ..Предсказательные схемы являются очень полезными как первый шаг в расчете конформационной энергии" [12. С. 340]. К сожалению, Немети и Шерага не поясняют, каким образом можно получить пригодную для уточнения белковую структуру, если все статистические алгоритмы (и тогда, и спустя двадцать лет) предсказывают неправильно конформационные состояния по крайней мере у половины остатков, причем в случае белка, неисследованного рентгеноструктурно, не известно, какой именно половины. [c.518]


Библиография для Проблема белка: [c.4]   
Смотреть страницы где упоминается термин Проблема белка: [c.18]    [c.2]    [c.3]    [c.33]    [c.65]    [c.97]    [c.103]    [c.126]    [c.129]    [c.193]    [c.225]    [c.257]    [c.289]    [c.291]    [c.321]    [c.353]    [c.417]    [c.449]    [c.481]    [c.483]    [c.543]   
Смотреть главы в:

Собрание трудов том 4 -> Проблема белка


Химическая литература Библиографический справочник (1953) -- [ c.143 ]




ПОИСК







© 2024 chem21.info Реклама на сайте