Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термическое разложение полимеров строение, влияние

    При термическом старении полимеров происходит образование и выделение летучих продуктов, которые, как правило, представляют собой смесь продуктов, выделяющихся при распаде полимера и соединений, являющихся продуктами различных вторичных реакций. Состав летучих продуктов, образующихся при термическом старении полимеров, приведен в табл. 32.6. На общий выход и состав летучих продуктов существенное влияние оказывает химическое строение полимера. Выделение мономера или других продуктов при термическом разложении полимеров зависит и от условий нагревания. [c.238]


    Термическая устойчивость полиамидов и полиимидов с объемными боковыми группировками заметно ниже, чем полимеров, полученных на основе 4,4 -диаминодифенила. Это наглядно видно из температурных зависимостей скоростей термического разложения полиамидов (рис. 6) и полипиромеллитимидов (рис. 7). Химическое строение группировки оказывает существенное влияние на термостойкость полимера, так что они могут быть расположены в следующий ряд по мере снижения термостойкости соответствующих полимеров  [c.269]

    ВИЯ испытаний, проводимых в лабораториях, очень близко ссответ-ствовали действительным условиям воздействия окружающей среды или менее жестким условиям для детального исследования механизма абляции полимеров. Установлено, что процесс абляции смолы зависит от таких факторов, как химическое и физическое строение полимера, температура, кинетика протекающих реакций, давление атмосферы и химическая природа окружающей среды. Влияние температуры на абляцию полимеров показано на рис. 14. Следует отметить, что заметный унос порошкообразной смолы про-исходит в температурном интервале 315—592 °С. Показано, что тефлон и найлон газифицируются без образования твердого остатка, тогда как такие полимеры, как полифенилены и полисилоксаны, образуют значительный твердый остаток. Влияние давления сводится к изменению кинетики протекания реакций и состава образующихся компонентов газовой смеси. Химически агрессивная среда, например, содержащая кислород, также оказывает большое влияние в том отношении, что она способствует ускорению термического разложения полимера. [c.433]

    Сополимеры винилиденфторида (ВФ) с полностью фторированными мономерами (ГФП и ТФЭ) и ТФХЭ по термической стабильности ближе всего к гомополимеру водородсодержащего мономера, т. е. ПВФ. Однако характер протекающих процессов изменяется [55, с. 295] значительно уменьшается количество отщепляющегося НР и одновременно возрастают скорости процессов деполимеризации и внутримолекулярной передачи цепи, характерных для гомополимеров полностью фторированных мономеров. Так, для вайтона А при 360°С наблюдалось снижение молекулярной массы от 2-105 до 1,6-10 при уменьшении массы образца всего на 3,5%. Соотношение процессов выделения НР и других продуктов пиролиза зависит от состава сополимера и условий пиролиза. Сильное термическое разложение фторэластомеров происходит в основном при нагревании при температуре 340—360°С и выше. Температура, при которой несшитые полимеры теряют 25% своей массы за 2 ч в вакууме и в кислороде, равны для сополимеров ВФ и ТФХЭ 351—365 и 336—345 °С, а для сополимеров ВФ и ГФП — 382—389 °С и 368—378 С (в зависимости от состава) [2]. Однако тщательное изучение процесса привело к необходимости выявить еще одну температурную область при меньших температурах нагревания. Показано [55, с. 294(], что при 250—300 °С в сополимерах ВФ и ГФП происходит некоторое (в пределах 1% после длительного нагревания при этих температурах) уменьшение массы, связанное с отщеплением НР и низкомолекулярных соединений. В условиях термического разложения при температурах выше 340— 360°С такие различия молекулярного строения полимеров, как молекулярная масса (и влияние на нее пластикации), разветвленность и другие, не являются определяющими, основным является химическое строение полимера, связанное с составом мономерных звеньев. Так, при нагревании в вакууме в течение [c.42]


    Влияние строения полимера на скорость его термического разложения изучалось также на трехмерном сополимере метилметакрилата с гликольдиметакрилатом и на сополимере стирола с ж-дивинилбензолом . Сополимер метилметакрилата с гликольдиметакрилатом, содержащим две двойные связи в молекуле [c.66]

    В другой работе [35], посвященной изучению вклада хелатного цикла в свойства полимеров, медьсодержащие координационные полимеры различных бис(0-дикетонов) (1Х-15) исследовались с помощью дифференциального термического анализа. Было показано, что с увеличением длины метиленовой цепи лиганда термостойкость полимера линейно уменьпгается это справедливо также для чисто органических линейных полимеров. Если бы разложение полимера шло только по хелатпому циклу, можно было бы ожидать постоянства температуры разложения независимо от химического строения остальной части полимера. Установлено, что бис( 3-дикетонатные) остатки не обладают сколько-нибудь необычными термическими свойствами. Выводы на основании этих результатов нельзя считать окончательными, поскольку стандартом, при проведении ДГА служила смесь окиси алюминия и хелата, а ее влияние на процесс не обсуждается. [c.246]

    Обсуждаются результаты работ по исследованию закономерностей деструкции фталидсодержащих полигетероариленов сложных полиэфиров (полиарилатов), простых полиэфиров, поликетонов, полиимидов и др. Рассматривается влияние химического строения этих полимеров на термическую, термоокислительную и термогидролитическую устойчивость, а также особенности распада фталидной группы и возможные пути ее дальнейших превращений, приводящих как к низкомолекулярным летучим продуктам разложения, так и межмолекулярным сшивкам. Более подробно разбирается механизм деструкции полиариленфталидов соотношение реакций разрыва полимерных цепей и их сшивания, формирование гель-фракции. На основании состава газообразных и конденсированных продуктов разложения предлагаются схемы термических превращений как фрагментов основной полимерной цепи, так и боковой фталидной группировки. [c.284]

    Для оценки влияния строения трехмерных полимеров на их термическую устойчивость определенный интерес представляет процесс вулканизации полимеров. Так, при разложении вулканизованного натурального (полиизопренового) каучука при 376—406° С, несмотря на наличие мостиков из серы, общая скорость пиролиза не изменилась . Летучие продукты, образующиеся при разложении каучука в вакууме, обладают, однако, значительно более высокой температурой кипения по сравнению с полученными из невулканизованного каучука. [c.68]


Смотреть страницы где упоминается термин Термическое разложение полимеров строение, влияние: [c.6]    [c.51]   
Стабилизация синтетических полимеров (1963) -- [ c.57 , c.60 , c.63 , c.64 , c.66 , c.68 ]




ПОИСК





Смотрите так же термины и статьи:

Полимеры строение

Полимеры термические

Разложение полимеров под влиянием

Термическое разложение полимеров



© 2025 chem21.info Реклама на сайте