Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свинцовые аккумуляторы пассивация электродов

    Поляризация при разряде возникает в силу ряда причин. Основная— это пассивация электродов, из-за которой при разряде потенциал положительного электрода становится отрицательнее, а отрицательного — положительнее, чем в отсутствие тока. Пассивация, в первую очередь, происходит из-за покрытия поверхности активных масс пленками, плохо проводящими ток. В ряде случаев (например, у железного электрода) это тончайшая пленка кислорода или оксидов, иногда пленка состоит из слоя труднорастворимых солей (например, в свинцовом аккумуляторе). Как известно из курса теоретической электрохимии, на потенциалы электродов и э. д. с. влияет концентрация электролита, с которым соприкасаются электроды. При разрядах и зарядах ХИТ из-за участия ионов в химическом процессе и переносе тока часто происходит местное (локальное) изменение концентрации электролита непосредственно у поверхности электродов и в их порах. Эти изменения концентрации у электродов изменяют их потенциалы появляется концентрационная поляризация. При разряде она так же, как и пассивация, снижает напряжение ХИТ и при заряде увеличивает его. Если произошло общее изменение концентрации электролита в сосуде, то и после прекращения разряда в отсутствие тока э.д.с. может быть ниже, ем была до разряда (например, в свинцовых аккумуляторах). [c.318]


    На основании этих данных было сделано заключение, что прекращение разряда указанных электродов не связано с образованием на их поверхности окисных пленок с высоким омическим сопротивлением, как это имеет место, например, при разряде отрицательного электрода свинцового аккумулятора, а вызвано пассивацией металлов под влиянием адсорбированного на них кислорода. Последний в количестве, равном нескольким молекулярным слоям (для кадмия) и даже доле мономолекулярного слоя (для железа), приводит к полной пассивации этих электродов. Таким образом, для указанных электродов общим является не только рассмотренный выше механизм анодного окисления одинаков и механизм их пассивации. [c.87]

    Как следует из уравнения (3), серная кислота принимает непосредственное участие в электродных реакциях и является по суш е-ству активным веществом наравне со свинцом и двуокисью свинца. Это в значительной степени объясняет заметное влияние концентрации электролита, а также условий заряда и разряда на электрические характеристики свинцового аккумулятора. Так, процесс диффузии ионов бисульфата к электродным поверхностям лимитирует скорость разряда аккумулятора. Диффузионные ограничения способствуют пассивации отрицательного электрода. Они же ограничивают скорость заряда, повышая концентрационную поляризацию и ускоряя таким путем побочную реакцию электролиза воды. [c.195]

    К числу элементов с твердым деполяризатором относятся также некоторые современные элементы, хранящиеся без электролита и заполняемые им только в момент включения в работу. Высокий потенциал и дешевизна электрода из двуокиси свинца сделали его интересным и для первичных элементов одноразового действия. В свинцовом аккумуляторе повышение плотности тока разряда ограничивается наступающей пассивацией электродов. Наиболее сильно подвержен пассивации отрицательный электрод, поэтому замена свинца отрицательного электрода на менее пассивирующийся материал может позволить повысить интенсивность разряда. Для этой цели берут металл, соли которого растворимы в электролите. Практически осуществлены системы  [c.561]

    Часто пассивацию металлов связывают с ме.ханической блокировкой части поверхности химически инертным изолирующим слоем. Такой механизм может быть наглядно проиллюстрирован на примсфе пассивации свинц0в010 электрода в растворе серной кислоты при анодной поляризации в гальваностатических условиях (процесс, протекающий на отрицательном электроде свинцового аккумулятора при разряде). На поверхности электрода по реакции (16.3) образуется довольно плотный пористый слой сульфата свинца. После первоначального заброса на электроде устанавливается постоянное значение потенциала (рис. 18.4), которое определяется кинетикой кристаллизации сульфата свинца. Через некоторое время потенциал начинает сначала медленно, а потом быстро с.мещаться в положительную сторону. Это смещение вызвано увеличением истинной плотности тока в порах слоя, общее сечение которых по мере роста слоя уменьшается. В результате увеличивается поляризация электрода кроме того, в порах возрастает значение омического падения потенциала. Если продолжать пропускание тока постоянной силы, то потенциал смещается до значения г, при котором начинается новая электрохимическая реакция образования диоксида свинца РЬОг, Реакция окисления свинца в сульфат свинца полностью прекращается, хотя запас металлического свинца еще далеко не израсходован. Пассивация наступает при толщине слоя сульфата свинца около 1 мкм. [c.339]


    Это достигается внесением в активную массу или в электролит ингибиторов. В некоторой степени ингибирующим действием обладают депассиваторы и расширители, но более активными являются специальные вещества, например, а-оксинафтойная кислота, суль-фанол и др. При выборе ингибиторов необходимо проверять, сочетаются ли они с применяемыми депассиваторами, в противном случае пассивация может усилиться. Например, сульфапол вредит действию гуминовой кислоты и хорошо сочетается с лигносульфа-натом натрия. Завышенное излишнее количество ингибиторов и депассиваторов также может оказать вредное действие, так как затрудняет заряд электродов [3, с. 136]. При загрязнении электролита ионами металлов переменной валентности саморазряд свинцовых аккумуляторов происходит и без газовыделения. Чаще всего такой очень вредной примесью являются ионы железа. Окисляясь при соприкосновении с РЬОг [c.459]

    В связи с работой над развитием теории свинцового аккумулятора нами производилось детальное изучение пассивации свинца в серной кислоте [12]. Снятие кривых заряжения и параллельное измерение емкости двойного слоя, которая в этом случае в первом приближении пропорциональна свободной поверхности металла, показали, что поверхность гладкого свинцового электрода во время анодной пассивации равномерно во времени покрывается изолирующим слоем кристалликов сульфата свинца. Это видно из изменения емкости во время анодной пассивации (кривая 1, рис. 1). Между прочим, этим было опровергнуто необоснованное предположение В. Мюллера о росте пленки сернокислого свинца в толщину после окончания роста в ширину , лежащее в основе его во многом неправильной теории пассивации. Возрастание потенциала свинца при анодной поляризации постоянным током (кривая 2, рис. 1) объясняется не увеличением сонротивлеиия в порах, что также является допуш ением теории В. Мюллера, а растущей поляризацией свинцового электрода, которую нри одинаковой истинной плотности тока можно наблюдать как в порах слоя сульфата, так и на поверхности свинца, свободной от осадка [c.140]

    Одна из наиболее сложных проблем — обеспечение работоспособности свинцовых аккумуляторов в области низкой температуры вплоть до —50°С. Емкость электродов при этом резко падает из-за снижения электрической проводимости и роста вязкости электролита, а также снижения растворимости сульфата свинца и уплотнения пассивирующих сульфатных пленок. Более чувствителен к этим изменениям отрицательный электрод, который и лимитирует емкость аккумулятора при низких температурах. Проявляет себя и так называемая ледяная пассивация — выпадение кристаллов льда на поверхности электродов. Она становится возможной из-за снижения концентрации электролита в процессе разряда, особенно в зоне положительного электрода. По-видимому, наиболее полное решение этой проблемы достигается заменой свинцового электрода непассивирующимся водородным. Это приводит к разработке и промышленному освоению по существу нового свинцово-водородного аккумулятора (см. гл. 11). [c.200]


Прикладная электрохимия Издание 3 (1974) -- [ c.455 , c.461 ]




ПОИСК





Смотрите так же термины и статьи:

Аккумуляторы

Пассивация

Свинцовые аккумуляторы аккумуляторов

Свинцовый аккумулятор

Электрод свинцовый



© 2025 chem21.info Реклама на сайте