Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поляризаций свинцовых аккумуляторов

    При заряде а разряде аккумулятора поляризация увеличивается, что и обусловливает постепенное снижение напряжения при разряде и увеличение его в процессе заряда. Типичные кривые заряда и разряда свинцового аккумулятора приведены на рис. II-1. [c.64]

    Влияние температуры. С повышением температуры емкость аккумулятора возрастает. Одновременно ускоряются нежелательные реакции, ведущие к саморазряду. Верхним пределом температуры для работы свинцового аккумулятора является 40—50 °С. Ниже 0°С емкость заметно падает. В этом случае возрастает внутреннее сопротивление, усиливается поляризация и создаются условия для образования мелкокристаллических плотных осадков сульфата свинца, вызывающих пассивирование отрицательного электрода. Вследствие затрудненности диффузии концентрация кислоты в порах активной массы снижается и при температуре ниже 0°С возможно замерзание разбавленной кислоты. При сильных морозах рекомендуется заливать аккумуляторы кислотой плотностью [c.68]


Рис. 25. Влияние поверхностно-активных веществ на поляризацию отрицательных электродов свинцового аккумулятора. Рис. 25. <a href="/info/230918">Влияние поверхностно-активных веществ</a> на <a href="/info/1155658">поляризацию отрицательных</a> <a href="/info/134302">электродов свинцового</a> аккумулятора.
    Как это будет показано, начальное падение напряжения при разряде аккумулятора не может быть объяснено только внутренним сопротивлением аккумулятора. Было сделано предположение, что падение напряжения на клеммах аккумулятора в начале разряда обусловлено одновременно и внутренним сопротивлением, и поляризацией свинцового и перекисно-свинцового электродов. Это предположение базировалось на исследованиях Б. Н. Кабанова [1], который измерял перенапряжение при анодной поляризации гладкого свинцового электрода при различных плотностях тока. Им было показано, что в интервале плотностей тока 10 —10 а/см перенапряжение растет пропорционально логарифму плотности тока. [c.558]

    Гораздо большая часть разности между напряжениями батареи при заряде и разряде должна быть отнесена за счет поляризации. Частично влияет газовая поляризация, но в случае свинцовых аккумуляторов более всего влияет поляризация концентрационная. Батарея ведет себя так, [c.365]

    Не меньшее влияние поляризация оказывает на работу химических источников электрической энергии — гальванических элементов и аккумуляторов. Водород на положительном электроде также выделяется с заметным перенапряжением, которое зависит от величины отбираемого тока, свойств полярной жидкости, материала электрода и состояния его поверхности. Наиболее часто поэтому для источников электрической энергии используют такие системы, в которых на положительных электродах вместо разряда ионов гидроксония протекает процесс восстановления какого-либо окислителя. В кислотном, свинцовом аккумуляторе [c.274]

    Поляризация при разряде возникает в силу ряда причин. Основная— это пассивация электродов, из-за которой при разряде потенциал положительного электрода становится отрицательнее, а отрицательного — положительнее, чем в отсутствие тока. Пассивация, в первую очередь, происходит из-за покрытия поверхности активных масс пленками, плохо проводящими ток. В ряде случаев (например, у железного электрода) это тончайшая пленка кислорода или оксидов, иногда пленка состоит из слоя труднорастворимых солей (например, в свинцовом аккумуляторе). Как известно из курса теоретической электрохимии, на потенциалы электродов и э. д. с. влияет концентрация электролита, с которым соприкасаются электроды. При разрядах и зарядах ХИТ из-за участия ионов в химическом процессе и переносе тока часто происходит местное (локальное) изменение концентрации электролита непосредственно у поверхности электродов и в их порах. Эти изменения концентрации у электродов изменяют их потенциалы появляется концентрационная поляризация. При разряде она так же, как и пассивация, снижает напряжение ХИТ и при заряде увеличивает его. Если произошло общее изменение концентрации электролита в сосуде, то и после прекращения разряда в отсутствие тока э.д.с. может быть ниже, ем была до разряда (например, в свинцовых аккумуляторах). [c.318]


    Часто пассивацию металлов связывают с ме.ханической блокировкой части поверхности химически инертным изолирующим слоем. Такой механизм может быть наглядно проиллюстрирован на примсфе пассивации свинц0в010 электрода в растворе серной кислоты при анодной поляризации в гальваностатических условиях (процесс, протекающий на отрицательном электроде свинцового аккумулятора при разряде). На поверхности электрода по реакции (16.3) образуется довольно плотный пористый слой сульфата свинца. После первоначального заброса на электроде устанавливается постоянное значение потенциала (рис. 18.4), которое определяется кинетикой кристаллизации сульфата свинца. Через некоторое время потенциал начинает сначала медленно, а потом быстро с.мещаться в положительную сторону. Это смещение вызвано увеличением истинной плотности тока в порах слоя, общее сечение которых по мере роста слоя уменьшается. В результате увеличивается поляризация электрода кроме того, в порах возрастает значение омического падения потенциала. Если продолжать пропускание тока постоянной силы, то потенциал смещается до значения г, при котором начинается новая электрохимическая реакция образования диоксида свинца РЬОг, Реакция окисления свинца в сульфат свинца полностью прекращается, хотя запас металлического свинца еще далеко не израсходован. Пассивация наступает при толщине слоя сульфата свинца около 1 мкм. [c.339]

    С течением времени омическое сопротивление при заряде и разряде изменяется незначительно, а э. д. с. поляризации возра-(тает и вместе с этим напряжение на клеммах при заряде аккумулятора повышается, а при разряде падает. Кроме того, поляризация в свинцовом аккумуляторе зависит от температуры, концентрации кислоты, плотности тока, устройства электродов и т. д. Поэтому изменение напряжения во время заряда и разряда при различных условиях протекает неодинаково, хотя характер кривых заряда и разряда, полученных при нормальных режимах работы, всегда остается общим.  [c.90]

    Вероятнее всего, в свинцовом аккумуляторе имеет место концентрационная поляризация. При заряде и разряде аккумулятора в порах активной массы в результате химической реакции происходит изменение концентрации кислоты, выравнивание которой за счет кислоты, находящейся в сосуде, отстает от процесса исчезновения или образования кислоты. Для объяснения различного напряжения, наблюдаемого при заряде и разряде, достаточно предположить, что при заряде током нормальной силы концентрация серной кислоты в порах активной массы на 20—30% выше, чем в электролите, а при разряде на 10% ниже. [c.91]

    Скольку окончание разряда определяется известным падением напряжения, то, очевидно, емкость свинцового аккумулятора должна зависеть от степени поляризации, так как полного использования активной массы к этому времени никогда не наступает. Все факторы, способствующие более быстрому выравниванию концентрации кис юты в порах активной массы, должны увеличивать емкость свинцового аккумулятора. Ниже мы рассмотрим влияние отдельных факторов на емкость аккумулятора. [c.95]

    Окисно-свинцовые аноды чувствительны к остановкам электролизеров, так как при этом электролизер начинает работать как свинцовый аккумулятор, происходит частичное восстановление активного слоя анода, анод теряет коррозионную стойкость и быстро разрушается при последующей анодной поляризации. [c.48]

    Характерной особенностью свинцового аккумулятора является то, что при его работе происходит объемное изменение активных материалов. При заряде аккумулятора, когда образуются РЬ и РЬОг, объем, занимаемый активными материалами, уменьшается следствием этого является повышение пористости. При разряде, наоборот, удельный объем продуктов реакции (РЬЗО ) больше и потому пористость уменьшается. Это приводит к тому, что доступ серной кислоты в глубину электродов затрудняется, а поляризация, электродов и падение напряжения увеличиваются. Этим главным образом и объясняется зависимость емкости свинцового аккумулятора от режима разряда. [c.501]

    Производство свинцовых аккумуляторов распределено по следующим цехам аккумуляторного завода в литейном цехе отливают пластины, решетки, свинцовые шарики (см. ниже) и детали в намазочном цехе готовят порошок, пасту, производят намазку и сушку пластин в формировочном цехе производят электролитическую обработку пластин путем их поляризации то анодно, то катодно, иногда с многократной переменой полярности в сборочном цехе собирают аккумуляторы из готовых деталей, к сборочному цеху примыкает отделение для химической обработки деревянных сепараторов. [c.508]

    Реакции в системе свинец — вода — серная кислота. На поверхности свинца при его коррозии и анодной поляризации (положительная пластина свинцового аккумулятора) [38, 39, 40] происходят следующие реакции  [c.321]


    Решетки большинства современных кислотных аккумуляторов отливаются из свинцово-сурьмяного сплава доэвтектоидного состава. Этот сплав, предложенный 78 лет тому назад, обладает достаточно высокими механическими и литейными свойствами, постоянством состава в жидком состоянии и малой окисляемостью в процессе отливки решеток, а также низкой стоимостью и недефицитностью исходных металлов. Недостатком сплава является относительно низкая коррозионная стойкость при анодной поляризации, ограничивающая в ряде случаев срок службы аккумулятора. Кроме того, наличие в сплаве значительных количеств сурьмы ускоряет саморазряд, а также может служить источником выделения токсичного сурьмянистого водорода, что весьма нежелательно в случаях эксплуатации батарей в закрытых помещениях. [c.50]

    Главной причиной, вызывающей коррозионное разрушение решеток положительных пластин свинцового аккумулятора, является, как известно, термодинамическая неустойчивость металлического свинца в условиях работы положительного электрода. Потенциал этого электрода изменяется приблизительно в пределах от 1,7 до 2,2 в (по водородной шкале). В этой области потенциалов свинец стремится перейти в соединения с различной степенью окисленности. Ниже рассмотрены некоторые из реакций, которые могут протекать на поверхности электрода из свинца и его сплавов, анодно поляризуемого в растворе серной кислоты. При слабой анодной поляризации возможно образование сульфата  [c.51]

    Принцип действия аккумуляторов основан на поляризации свинцовых электродов. Под действием постоянного тока зарядного агрегата электролит (раствор серной кислоты) разлагается на кислород и водород. Продукты разложения вступают в химическую реакцию со свинцовыми электродами на положительном электроде, т. е. на электроде, присоединенном к плюсу зарядного агрегата, образуется двуокись свинца (РЬОг), а на отрицательном электроде, присоединенном к минусу зарядного агрегата — губчатый свинец. [c.28]

    Как следует из уравнения (3), серная кислота принимает непосредственное участие в электродных реакциях и является по суш е-ству активным веществом наравне со свинцом и двуокисью свинца. Это в значительной степени объясняет заметное влияние концентрации электролита, а также условий заряда и разряда на электрические характеристики свинцового аккумулятора. Так, процесс диффузии ионов бисульфата к электродным поверхностям лимитирует скорость разряда аккумулятора. Диффузионные ограничения способствуют пассивации отрицательного электрода. Они же ограничивают скорость заряда, повышая концентрационную поляризацию и ускоряя таким путем побочную реакцию электролиза воды. [c.195]

    На возможность использования вторичного тока поляризации для практических целей впервые указал академик Якоби. В 1860 г. эта идея была реализована Планте, который построил аккумулятор, состоящий из двух изолированных друг от друга свинцовых листов, свернутых в виде спирали и погруженных в сосуд с серной кислотой. Такой аккумулятор в заряженном виде в качестве активной массы положительного электрода содержал двуокись свинца, в качестве отрицательного электрода — губчатый свинец. [c.61]

    При небольших поляризациях, именно в тех пределах потенциалов, в которых нормально работает свинцовый аккумулятор, эта поляризация является концентрационной, т. е. обусловлена пересыщением раствора сернокислым свинцом. Пассивации, связанной с адсорбцией кислорода. [c.140]

    В связи с работой над развитием теории свинцового аккумулятора нами производилось детальное изучение пассивации свинца в серной кислоте [12]. Снятие кривых заряжения и параллельное измерение емкости двойного слоя, которая в этом случае в первом приближении пропорциональна свободной поверхности металла, показали, что поверхность гладкого свинцового электрода во время анодной пассивации равномерно во времени покрывается изолирующим слоем кристалликов сульфата свинца. Это видно из изменения емкости во время анодной пассивации (кривая 1, рис. 1). Между прочим, этим было опровергнуто необоснованное предположение В. Мюллера о росте пленки сернокислого свинца в толщину после окончания роста в ширину , лежащее в основе его во многом неправильной теории пассивации. Возрастание потенциала свинца при анодной поляризации постоянным током (кривая 2, рис. 1) объясняется не увеличением сонротивлеиия в порах, что также является допуш ением теории В. Мюллера, а растущей поляризацией свинцового электрода, которую нри одинаковой истинной плотности тока можно наблюдать как в порах слоя сульфата, так и на поверхности свинца, свободной от осадка [c.140]

    Показано, что начальное падение напряжения при разряде свинцового аккумулятора вызвано сопротивлением и поляризацией. [c.564]

    В эксплуатации аккумулятора кристаллы сернокислого бария иг рают роль ядра для осаждения свинцового сульфата в наиболее желательной форме. Поляризация в силу этого уменьшается, а относительная емкость активных материалов возрастает. [c.29]

    При практическом осуществлении электролиза поляризация приводит к увеличению затрат энергии, поэтому ее обычно стремятся устранить, добавляя вещества, связывающие продукты электролиза. Эти вещества называют деполяризаторами. Однако существуют приборы, в которых поляризацию используют в качестве полезного явления. Эти приборы — аккумуляторы. Например, свинцовый аккумулятор устроен следующим образом. Если взять два свинцовых электрода, поместить их в раствор НгЗОч с РЬ504 и проводить электролиз, то на катоде выделяется свинец на аноде РЬ + окисляется до РЬ + и в конечном счете выделяется РЬОг. Это как бы результат поляризации. Таким образом, в результате зарядки аккумулятора получим гальванический элемент [c.384]

    Сульфат свинца, образующийся на электродах при разрядке аккумулятора, обладая некоторой небольшой растворимостью, склонен к перекристаллизации с образованием крупных кристаллов РЬ504. Это явление, получившее название сульфатации пластин, желательно предупредить, так как при наличии крупных кристаллов сульфата заряд пластин становится затрудненным. Дело в том, что небольшая скорость растворения крупных кристаллов сульфата недостаточна для питания зарядного тока на обоих электродах (рис. 262) может возникнуть концентрационная поляризация и на отрицательном электроде, например, может начаться процесс выделения водорода. Сказанное подтверждается практикой эксплуатации свинцовых аккумуляторов. Заряд засульфатированных пластин всегда сопровождается обильным газовыделением и повышением, против обычного, напряжения на клеммах аккумулятора. [c.501]

    Положительный электрод свинцовото аккумулятора состоит из токоотвода и активного материала — диоксида свинца, находящегося в ячейках токоотвода. Токо-отводы стартерных свинцовых аккумуляторов отливаются из свинцово-сурьмянистых сплавов. Впервые свинцово-сурьмянистый сплав для аккумуляторов был создан около 100 лет назад. Он обладает высокими механическими и литейными свойствами, постоянством состава и малой окисляемостью при литье, а, кроме того, низкой стоимостью. Существенным недостатком этого сплава является относительно низкая коррозионная стойкость при анодной поляризации (т.е. при заряде аккумулятора), которая зачастую ограничивает срок службы аккумулятора. Негативное влияние оказывает также наличие в сплаве сурьмы, которая ускоряет саморазряд аккумулятора. [c.23]

    Явления электродной поляризации и перенапряжения имеют значение для работы аккумуляторов, которые служат для накопления и последующего использования электрической энергии. В настоящее время широко применяются свинцовые (Плантэ, 1859) и щелочные аккумуляторы (Эдиссон, 1900). Свинцовый аккумулятор изготовляется из свинцовых пластин (или решеток), покрытых (или заполненных) вначале пастой из окисп свинца РЬО и погруженных в 25—30% серную кислоту. Окись свинца, взаимодействуя с серной кислотой, превращается в сульфат РЬ804. При пропускании электрического тока через раствор сульфат свинца восстанавливается с выделением губчатого свинца па катоде и окисляется до перекиси свинца па аноде. В результате образуется гальванический элемент, электродвижущая сила которого равна 2,05 в. [c.167]

    Так как в свинцовом аккумуляторе применяется снлав свипца с 6— 10% сурьмы, было исследовано влияние ряда факторов на поведение его ири анодной поляризации. Исследовались сплавы с 3, 6, 10 и 15% сурьмы. Оказалось, что анодная коррозия металла при окислении малыми плотностями тока резко возрастает но мере увеличения содержания в нем сурьмы при больнн1х плотностях тока зависимость коррозии от содерл<а-ния сурьмы проявляется значительно мопьи е. Па рис. 2 показана зависимость количества ирокорродировавшего металла (выраженного в минутах длительности катодного [c.541]

    ВЛИЯНИЕ ПОЛЯРИЗАЦИИ И ВНУТРЕННЕГО С(Ж1Р0ТИВЛЕНИЯ НА РАЗРЯДНОЕ НАПРЯЖЕНИЕ СВИНЦОВОГО АККУМУЛЯТОРА [c.558]

    Полезное применение явления поляризации находят для целей накопления электрической энергии. Используемые для этого в технике усггройства называются аккумуляторами. Их употребление целесообразно, если они имеют высокий к. п. д., большую энергоемкость при малой массе и компактность. Этим требованиям удовлетворяют только свинцовые (кислотные) и никелевые (щелочные) аккумуляторы, а также разработанные в последнее время особенно энергоемкие цинк-серебряные и никель-кадмиевые. Последние в сочетании с солнечными батареями составляют бортовую энергетику космических кораблей. [c.195]

    Кислотные аккумуляторы приготавливают (заряжают) путем электролиза водного раствора серной кислоты (20—30%) между двумя свинцовыми электродами, покрытыми сернокислым свинцом. При этом на катоде осаждается металлический свинец, а на аноде ионы окисляются до РЬ и выделяются в виде перекиси свинца (PbOj). Таким образом, вследствие поляризации образуется гальванический элемент [c.195]

    Напряжение при разряде (заряде), кроме поляризации электродов, зависит также от падения напряжения на преодоление внутреннего омического сопротивления ХИЭЭ. Последняя величина слагается из омического сопротивления проводников первого рода (электродов), электросопротивления электролита и сепараторов. При разряде малыми плотностями тока падение напряжения внутри ХИЭЭ не имеет значения, но при больших плотностях тока оно может оказаться заметным. Например, в свинцовом автомобильном аккумуляторе омическое сопротивление электролита и сепараторов при комнатной температуре приблизительно равно 0,006 ом на 1 дм площади электродов. При плотности тока разряда 2а1дм падение напряжения составит около 70 мв, т. е. около 3,5% от э. д. с. аккумулятора. [c.465]

    Напр., образовапие амальгам щелочных металлов при электролитич. получении хлора и щелочей становится возможным из-за высокой поляризации при выделении водорода на ртути. Свинцовый аккумудв-тор нельзя было бы зарядить и хранить в заряженном состоянии, если бы не наблюдалось большой поляризации при выделении водорода на свинце. Большая поляризация, наблюдаемая при выделении кислорода на никеле, позволяет получить высшие окислы пикеля на положительном электроде щелочного аккумулятора при его зарядке. Высокое значение П. э. при выделении водорода на цинке обеспечивает болг.-шую коррозионную стойкость цинкового электрода в растворах солей и щелочей, от к-рой существенно зависит сохранность сухих марганцевоцинковых элементов и серебряноцинковых аккумуляторов. [c.128]

    Положительным полюсом авто-аккумулятора является электрод воздушной деполяризации ( очень пористый уголь, омываемый воздухом ), отрицательным — рабочий электрод из сравнительно слабо окисляемого металла (нанример свинца), соединенный электрически с более электроотрицательным металлом (например с натрием), находящимся в том же электролите (концентрированный раствор соли). При использовании элемента свинцовый электрод окисляется и э.д.с. падает. При стоянии после размыкания рабочей цени ои вновь восспанавливается за счет работы вспомогательного элемента, в котором свинец является уже положительным полюсом, а натрий — отрицательным. Поддержание потенциала свиниа достаточно отрицательным относительно угля может происходить и во время работы элемента, благодаря непрерывной катодной поляризации, которой он подвергается во вспомогательном элементе. [c.536]


Смотреть страницы где упоминается термин Поляризаций свинцовых аккумуляторов: [c.69]    [c.10]    [c.202]    [c.747]    [c.753]    [c.552]    [c.135]    [c.30]    [c.163]   
Технология электрохимических производств (1949) -- [ c.91 ]




ПОИСК





Смотрите так же термины и статьи:

Аккумуляторы

Поляризация. Аккумуляторы

С е л и ц к и й. Влияние поляризации и внутреннего сопротивления на разрядное напряжение свинцового аккумулятора

Свинцовые аккумуляторы аккумуляторов

Свинцовый аккумулятор



© 2025 chem21.info Реклама на сайте