Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Образование окисных соединений на поверхности металла

    Из теории роста защитных пленок на поверхности металла (см. гл. I, стр. 29) вытекает, что при высокотемпературном окислении металла скорость коррозии его быстро уменьшается во времени благодаря образованию пленки окислов весьма совершенной структуры. Очевидно, что металл, на поверхности которого заранее образована окисная пленка, будет обладать меньшей скоростью коррозии в обычных условиях. Этот метод защиты металлов известен с давних пор. Процессы образования защитных окисных пленок называются по-разному, в зависимости от метода, положенного в их основу газовое оксидирование, воронение, анодирование. Кроме окисных пленок, защитным действием обладают и другие поверхностные соединения, особенно фосфатные. Процесс образования на поверхности стали, алюминия, цинка и других металлов пленки фосфатов называется фосфатированием. Этот процесс очень широко применяют в технике, используя фосфатные пленки в качестве подслоя под лакокрасочные покрытия. [c.160]


    При взаимодействии металла с сухими газами (воздухом, газообразными продуктами горения топлива и др.) при высоких температурах происходит газовая химическая коррозия. Этот вид коррозии возможен и при низких температурах, если при этом на поверхности металла не конденсируется жидкость, проводящая электрический ток. Газовой коррозии подвергаются детали газовых турбин, двигателей внутреннего сгорания, арматура печей подогрева нефти и другие изделия, работающие при повышенных температурах в среде сухих газов. При проведении многочисленных технологических процессов обработки металлов в условиях высоких температур (нагрев перед ковкой, прокаткой, штамповкой, при термической обработке - закалка, отжиг, сварка) на металлургических и трубопрокатных заводах также возможна газовая коррозия. При взаимодействии металла с кислородом воздуха или содержащимся в других газах происходит его окисление с образованием окисных продуктов коррозии. В отдельных случаях, например при воздействии на металл паров серы или ее соединений, на поверхности металла могут образоваться сернистые соединения. [c.17]

    ОБРАЗОВАНИЕ ОКИСНЫХ СОЕДИНЕНИИ НА ПОВЕРХНОСТИ МЕТАЛЛА [c.133]

    Образование окисных соединений на поверхности металла 133 [c.133]

    Особого внимания заслуживают также многоэлектронные электрохимические процессы. Одновременный перенос п электронов при протекании таких процессов возможен, если образование промежуточных соединений при последовательном переносе электронов энергетически невыгодно. В противном случае ввиду резкого возрастания энергии реорганизации при одновременном переносе нескольких электронов более выгодным оказывается постадийное протекание процесса разряда. Таким образом, возникает необходимость обсуждения особенностей кинетики электрохимических реакций с последовательным переносом нескольких электронов. Значительный интерес представляют также электрохимические системы, в которых на поверхности электрода при постоянном потенциале возможно одновременное протекание нескольких параллельных электродных процессов. На ход электрохимических реакций влияют образование окисных слоев и адсорбция органических соединений на поверхности металла. [c.298]

    При дальнейшем сдвиге потенциала может идти и реакция образования N 02, потенциал которой в нейтральной среде равен +0,305 в. В более щелочных электролитах образование окисных соединений никеля облегчается, поскольку чем выше pH, тем при более отрицательном потенциале начинается анодная реакция. Образование на поверхности никеля окисных слоев способствует переходу металла в пассивное состояние и прекращению процесса его ионизации (коррозии). [c.135]


    А. Т. Ваграмян и сотрудники [14, 15] считают, что одной из основных трудностей восстановления ионов металлов на твердой поверхности является склонность металлов к пассивированию. По степени трудности восстановления ионов они делят все металлы на три группы. К первой группе относятся металлы, выделяющиеся на катоде с низким перенапряжением (олово, кадмий, цинк, медь, серебро и др.). Для металлов этой группы характерна малая скорость пассивации и электроосаждение на активных участках катода. Металлы, выделяемые с большим перенапряжением, объединяются во вторую группу (железо, никель, кобальт, хром, марганец и др.). Эти металлы отличаются большой склонностью к пассивированию. Считается, что возникновение на поверхности электрода пленки из чужеродных частиц затрудняет дальнейший разряд ионов. К третьей группе относятся металлы, осадить которые из водных растворов не удается (молибден, вольфрам, уран, ниобий, титан, тантал). Большая реакционная способность этих металлов приводит к образованию окисных соединений, на поверхности которых, по мнению А. Т. Баграмяна и его [c.55]

    В настоящее время существуют две основные точки зрения относительно механизма пассивации и природы пассивного состояния Согласно одной из них, торможение процесса растворения металла наступает в результате образования на его поверхности фазовой окисной пленки, изолирующей металл от электролита, согласно другой,— пассивация является результатом образования на металлической поверхности адсорбированных слоев кислорода или кислородсодержащих соединений. [c.176]

    На ход электрохимических реакций влияют образование окисных слоев и адсорбция органических соединений на поверхности металла. [c.312]

    Предположение о том, что остановка растворения в этом и других подобных случаях обусловлена появлением на поверхности химически связанного кислорода, высказал М. Фарадей. Он же применительно к такому инертному состоянию металла ввел в употребление тер-мин пассивность . К настоящему, моменту на механизм пассивирования и природу пассивных пленок установились две основные точки зрения. Согласно одной из них, торможение процессов на границе фаз металл — раствор наступает в результате образования на поверхности металла фазовой окисной пленки. Согласно другой точке зрения, пассивирование металлов и сплавов обусловлено адсорбцией на поверхности кислорода и некоторых кислородсодержащих соединений. [c.394]

    Металлы, находясь высоко в ряду напряжений, надежно защищаются тонкой окисной пленкой (при умеренных температурах и в отсутствие комплексообразователей) от воздействия воды, кислот, кислорода, а также от проникновения к поверхности металлов водорода, который способен к растворению в металлах и образованию химических соединений. Это обстоятельство, а также высокая прочность соединений металлов с большинством элементов, вероятно, и определяет малую пригодность самих металлов в качестве катализаторов. [c.541]

    Анализируя данные табл. 28, можно заключить, что при анодной поляризации магния, наряду с реакцией ионизации металла, на поверхности последнего должен легко протекать и процесс образования окисных и гидроокисных соединений, поскольку потенциалы этих реакций довольно близки. Особенно легко должны идти реакции, сопровождающиеся образованием фторидных и фосфатных соединений, поскольку потенциалы этих реакций отрицательнее потенциалов образования окисных и гидроокисных соединений. [c.133]

    Никель, как и железо, способен к пассивации. Его пассивность в отличие от железа более устойчива и может возникать на воздухе, в водных растворах щелочи и при анодной поляризации. Добавка никеля к стали или чугуну обычно оказывает облагораживающее действие а черные металлы, их сплавы с никелем более стойки к коррозии. Пассивность никеля обусловлена образованием стойких окисных пленок, закрывающих поверхность металла и затрудняющих переход его ионов в раствор. В зависимости от способа пассивации строение и состав окисных пленок могут быть различны. Пассивность никеля может вызываться хемосорбцией гидроксильных или кислородных ионов иа поверхности металла, образованием его окислов и гидроокисей или других нерастворимых в данном растворе соединений. Пассивирование никеля при анодной поляризации определяется свойствами анионов электролита и сильно зависит от величины pH раствора чем больше его pH, тем скорее и полнее пассивируется металл . Пассивации способствуют также повышение анодной плотности тока, снижение температуры и наличие в растворе ионов никеля. Противоположное влияние на пассивацию никеля оказывает присутствие в электролите хлор-иона, сульфатов, карбонатов и других кислотных анионов 5 З", а также наличие примесей в металле Агрессивное действие ионов хлора и кислородсодержащих анионов проявляется тем сильнее, чем меньше концентрация щелочи. В растворах карбонатов никелевый анод нестоек. [c.212]


    Активирование поверхности нержавеющих сталей хлор-ионами в отсутствие растворенного кислорода происходит также по-иному, чем при наличии кислорода. Активирование наступает в отсутствие кислорода при более отрицательном потенциале, причем периодические колебания сами по себе значительно меньше, чем в случае, когда кислород присутствует в электролите (рис. 158, б). Это также указывает на то,что растворенный в электролите кислород менее прочно связан с поверхностью металла по сравнению с окисными соединениями, образованными яри реакции электрохимического окисления. [c.317]

    Наиболее распространенными неметаллическими защитными пленками, являются окисные и фосфатные. Образование окисных пленок (оксидирование) достигается путем химической или электрохимической обработки поверхности, главным образом, черных металлов. Фосфатные пленки получают на поверхности черных металлов путем химической обработки (фосфатирования) смесями фосфорнокислых соединений. [c.153]

    Металлы имеют серебристо-белый цвет и очень реакционноспособны. На воздухе они быстро тускнеют и легко горят, превращаясь в окислы типа МоОд (за исключением Се, который образует СеО,). Иттрий вполне устойчив на воздухе даже при температуре до 1000° вследствие образования на его поверхности защитной окисной пленки [21. Металлы реагируют с водородом, выделяя тепло, хотя для того, чтобы эта реакция началась, часто необходим подогрев до 300—400 ". В результате образуются фазы МН.2 и МНд, которые обычно имеют дефектную решетку и термически достаточно устойчивы, в некоторых случаях до температур 900°. Фазы МН, построены по типу флюорита и имеют солеобразный характер. Они мало похожи на гидриды переходных металлов и в большей степени напоминают ионные соединения. Они легко реагируют с кислородом, водой, а с КНз при 800° образуют нитриды [За . [c.508]

    Механизм сухой атмосферной коррозии металлов аналогичен химическому процессу образования и роста на металлах пленок продуктов коррозии, описанному в ч. I. Процесс сухой атмосферной коррозии металлов сначала протекает быстро, но с большим торможением во времени так, что через некоторое время, порядка нес <ольких или десятков минут, устанавливается практически постоянная и очень незначительная скорость (рис. 263), что обусловлено невысокими температурами атмосферного воздуха. Так образуются на металлах в кислороде или сухом воздухе тонкие окисные пленки, и поверхность металлов тускнеет. Если в воздухе содержатся другие газы, например сернистые соединения, защитные свойства пленки образующихся продуктов коррозии могут снизиться, а скорость коррозии в связи с этим несколько возрасти. Однако, как правило, сухая атмосферная коррозия не приводит к существенному коррозионному разрушению металлических конструкций. [c.373]

    Станнан — очень неустойчивое соединение. Он разлагается на элементы с заметной скоростью уже при комнатной температуре при 150° С разложение происходит мгновенно. Образующееся олово отлагается на стенках сосуда в виде металлического зеркала. Исследование кинетики термического разложения станнана на поверхности металлического олова показало, что реакция идет по первому порядку относительно концентрации станнана и не зависит от давления водорода [123, 124]. Небольшие количества кислорода подавляют разложение за счет образования окисной пленки на поверхности металла. [c.615]

    Так же, как и описанные ранее иминохинондиазиды, диазокетоны и диазосульфонаты, хинондиазиды способны достаточно прочно удерживаться на поверхности металлических пластин. По-видимому, это является результатом образования комплексных соединений с металлом. Прочность связи хинондиазидов с подложкой значительно возрастает, если в результате предварительной подготовки поверхность металла покрыта окисной пленкой. [c.192]

    Если поглощаемое вещество химически взаимодействует с поглотителем, то такой процесс называется хемосорбцией. Хемосорбция может протекать и в поверхностном слое, и в толще всего адсорбента. Например, явлением хемосорбции объясняется образование тончайшей окисной пленки на металлах (А1, Zn, Мп), которая предохраняет их от коррозии. Если образующиеся на поверхности химические соединения будут рыхлыми, то хемосорбция может распространяться по всему адсорбенту, например коррозия железа или поглощение газов натронной известью [смесь NaOH и Са(0Н)2]. [c.94]

    При склеивании металлов химические связи возникают между гидратированной окисной пленкой, находящейся на поверхности, и функциональными группами полимерных клеев. Ионная связь наблюдается также при склеивании металлов клеями на основе эластомеров (образование сульфидов) или фенолоформ-альдегидными клеями (образование фенолятов металлов). Эта связь возникает тогда, когда реагирующие атомы в процессе образования клеевого соединения присоединяют или отдают электроны. [c.42]

    Парафиновые и олефиновые углеводороды, содержащие шесть и более углеродных атомов в прямой цепи, могут быть подвергнуты дегидрированию и циклизации до ароматических углеводородов с тем же числом углеродных атомов. Для осуществления этой реакции можно использовать два типа катализаторов 1) окислы металлов и 2) восстановленные металлы. В качестве окисных катализаторов применяют главным образом окись хрома, окись молибдена и окись ванадия в чистом виде или еще лучше на носителе, например на окиси алюминия. В качестве металлических катализаторов применяют металлы vni группы периодической системы, главным образом никель или платину на носителе типа окиси алюминия. При дегидроциклизации на поверхности окисных катализаторов наряду с образованием ароматических соединений происходит образование олефинов. Образование олефинов представляет собой, по-видимому, промежуточную стадию процесса их выход, как правило, не превышает 10%. Исходный углеводород можно полностью превратить в ароматический, применив соответствующий катализатор. Наиболее эффективным катализатором в случае проведения реакции при атмосферном давлении является окись хрома (СГдОд), которую обычно наносят на окись алюминия либо путем пропитки, либо совместным осаждением обоих окислов. [c.141]

    Еще одно требование относится к хорошей адгезии между стеклом и металлом. Большинство металлов при спаивании со стеклом образуют тонкую вязкую окисную пленку, и стекло обычно прилипает к ней. Окисная пленка должна сама быть эластичной и сокращаться при расширении стекла и металла. Этот процесс может произойти без нарушения адгезии только в том случае, если слой достаточно тонок. О состоянии металлической поверхности часто судят по ее цвету, и это является методом оценки качества спая [1812]. В спае также должны отсутствовать пузырьки, образованные при соединении стекла и металла растворенным газом из металла или (в случае металлов, содержащих двухвалентное железо, и сплавов) углеродом из металла, который диффундирует к поверхности, где он реагирует с окисной пленкой и образует окись углерода. Такие металлы, как платина и вольфрам, не требуют обез-гаживания. Другие сплавы для спайки получают в обезгаженном виде плавкой в вакууме. Многие сплавы, содержащие железо, должны быть обезугле- [c.147]

    К ПАВ катодного действия относятся амины, амиды, имиды, гетероциклические соединения с азотом в кольце (имидазолины, окса-золины и пр.), а также многие другие ПАВ, содержащие группы с положительным суммарным электронным эффектом. Эти соединения, по данным работ [10,34,68,697,адсорбируются и образуют хемосорбцион-ную фазу прежде всего на отрицательно заряженных катодных участках металла. Сродство электрона к поверхности большинства металлов оказывается меньшим, чем к ПАБ. В этом случае электроны металла переходят на электронные оболочки молекулы ПАВ, электронная плотность на поверхности металла возрастает. По данным [70], энергия связи ингибитора с защищаемым металлом определяется электронной плотностью атомов ингибитора, т.е. тем числом электронов, которое идет на координационную связь с металлом. При этом третичные амины действуют сильнее, чем вторичные и первичные. Возможны случаи, когда атомы азота вступают в координационную связь не непосредственно с атомами металла, а через атомы кислорода, который входит в состав первичных окисных пленок. Большинство катодных ингибиторов коррозии хорошо защищает черные металлы, но усиливает химическую коррозию цветных металлов. Это связано с образованием растворимых в среде (маслах) хемосорбционных соединений между ПАВ катодного действия и цветными металлами ю].  [c.28]

    Опубликовано большое число методов,, особенно в патентной литературе, по различным видам обработки поверхностей металлов окислителями, например перекисью водорода или другими перекисными соединениями. Эта обработка может преследовать самые различные цели, иапример 1) осаждение некоторых соединений или сохранение известных веществ в растворе, как описано выше 2) образование окисной пленки на поверхности 3) освобождение поверхности металла от нежелательных или специфических компонентов 4) растворение металла с поверхности и удаление его. Опубликованные методы получения окисных пленок являются обычно весьма специфическими, и выбор их сильно зависит от намеченной цели как правило, они заключаются в многократных окунаниях материала в две или большее число ванн разного состава, одна из которых содержит окислитель. Образующаяся таким образом окисная пленка может улучшить внешний вид металлического изделия, способствовать возникновению более устойчивого покрытия, пассивировать поверхность. металла, сообщая ей большую инертность, или давать какой-либо другой эффект (например, в производстве селеновых или купрокс-ных выпрямителей). [c.495]

    Меры защиты от коррозии разнообразны покрытие поверхности металлов краской, эмалью, другими металлами, более корроЪионнб-устойчивыми (никелирование, хромирование, алитирование — покрытие алюминием) образование окисных пленок ( вороненая сталь) фосфатирование (покрытие нерастворимыми фосфатными пленками) соединение защищаемого металлического предмета с более активным металлом — протекторная защита присоединение к катоду источника постоянного электрического тока — электрохимическая защита. В этом случае металлическая конструкция получает отрицательный заряд и поэтому не отдает ионов металла. Коррозии препятствуют также специальные вещества — ингибиторы, вводимые в жидкую среду. Например, прибавление ингибиторов ПБ и ЧМ к кислоте в небольшом количестве (0,1—0,5%) замедляет коррозию железа в 10—100 и более раз. [c.84]

    По способности активировать алюминий анионы могут быть расположены в ряд СГ, Вг, 1 , СЮ4, МОз [45]. Способность к анодному активированию алюминия у анионов Р , 504, КО , ОН" весьма мала. Активирующее действие хлоридов связано с разрушением ими окисной пассивирующей пленки за счет адсорбции хлор-иона пленкой и вытеснения из нее кислорода или адсорбции на открытых участках поверхности металла, препятствующей образованию окислов [36], при достижении определенного потенциала. Адсорбированный хлор может образовывать с алюминием хемосорбционные соединения (типа А1С1з). Продукты гидролиза хемосорбционного соединения в свою очередь способствуют депассивации металла. Скорость разрушения окисной пленки возрастает при уменьшении радиуса анионов (иода, брома и хлора) и возрастании пептизирующей способности в отношении к А1(0Н)з [177]. [c.56]

    Коррозионное поведение электрохимически неблагородного титана определяется действием покровных пленок. В кислотах, реагирующих с титаном с выделением водорода, образуются пленки из гидрида титана, в азотной кислоте и царской водке —из Т102 (анатаз), в хромовой кислоте — ТЮг (анатаз и рутил) [17—19]. Пленки из гидрида титана достигают значительной толщины (несколько микронов), причем содержание водорода снижается по мере удаления от поверхности металла. В более сильных кислотах и при повышении температуры скорость растворения защитных пленок превышает скорость их образования. Присутствие окислителей благоприятствует образованию окисных пленок. Вещества, образующие комплексные соединения (например, ионы фтора), концентрированная серная кислота, соляная кислота, ионы фтора, а также щавелевая кислота препятствуют созданию защитных пленок в связи с образованием легкорастворимых соединений. [c.427]


Смотреть страницы где упоминается термин Образование окисных соединений на поверхности металла: [c.314]    [c.189]    [c.132]    [c.209]    [c.424]    [c.370]    [c.207]    [c.54]    [c.391]    [c.458]    [c.180]    [c.25]    [c.21]   
Смотреть главы в:

Коррозия химической аппаратуры и коррозионностойкие материалы Изд 4 -> Образование окисных соединений на поверхности металла




ПОИСК





Смотрите так же термины и статьи:

Металлы соединения

Образование металлов

Поверхность металла



© 2025 chem21.info Реклама на сайте