Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Регуляция активности генов

    На первый взгляд схема комбинационной регуляции активности генов, представленная на рис. 10-7. дает основание для вывода о постепенно накапливающихся различиях межд> клетками последующих поколений. Например, можно предположить, что добавление регуляторного белка 2 к клеткам С и Е приведет к появлению в этих клетках одного и того же набора дополнительных белков (тех, которые кодируются генами, активируемыми белком-регулятором 2). Подобная точка зрения неверна по очень простой причине. Комбинационная регуляция гена гораздо сложнее этой схемы потому, что различные регуляторные белки взаимодействуют друг с другом. Даже у бактерий для включения одного-единственного гена иногда бывает необходимо взаимодействие двух различных регуляторных белков (см. разд. 10.2.2). У высших эукариот транскрипция какого-либо гена обычно требует совместного действия целого кластера активаторных белков (см. разд. 10.2.9). Например, белок 2 при взаимодействии с активаторным белком 1 может включать в клетке Е иной набор генов, нежели тот, который он включает в клетке С. По-видимому, именно поэтому единственный белок-рецептор стероидного гормона (пример белка-регулятора) в различных типах клеток млекопитающих определяет синтез разных наборов белка (см. разд. 12.2.2). В целом, специфические изменения в экспрессии гена, возникающие в результате синтеза регуляторного белка, зависят от предыстории клеток, так как именно эти предьщущие события и определяют, какие белки-регуляторы уже имеются в клетке (рис. 10-8). [c.181]


Рис. 11.3. Генная регуляция (регуляция активности генов) Рис. 11.3. <a href="/info/33345">Генная регуляция</a> (<a href="/info/284799">регуляция активности</a> генов)
    Весьма близки грамицидину 8 по строению и характеру действия антибиотики группы тироцидина показано, что эти соединения образуют комплексы с ДНК. участвуя в регуляции активности генов. [c.286]

    Генетика человека большинством своих достижений обязана тому, что она опиралась на законы Менделя и использовала методы, разработанные в различных областях биологии. Такие важные проблемы, как регуляция активности генов, особенно во время эмбрионального развития, регуляция деятельности иммунной системы и работы мозга выходят за рамки имеющихся фундаментальных представлений, однако эти рамки постоянно расширяются. Генетика человека вносит вклад в решение этих проблем путем исследования генетического разнообразия и заболеваний с помощью новейших методов чтобы понять причины наследственных болезней, необходимо ра- [c.34]

    Влияние давления на регуляцию активности генов ингибирование связывания индуктора с репрессором [c.326]

    См. Ф. Жакоб, Ж. Моно. Регуляция активности генов. В сб. Регуляторные механизмы клетки . М., изд-во Мир , 1964. [c.192]

    После того как бьш расшифрован генетический код и бьша установлена структура ДНК, исследования в области генетики ушли далеко вперед. Одна из главных проблем, которая особенно волнует молекулярных генетиков, это вопрос о том, каким образом регуляция активности генов обеспечивает выполнение каждой клеткой единой программы развития и ее собственных функций. [c.177]

    Связь метилирования с процессами регуляции активности генов представляет особый интерес, поскольку, как было отмечено выше, состояние метилирования тех или иных сайтов может закрепляться в ходе передачи наследственной информации при полуконсервативной репликации. Как будет рассмотрено в гл. 17, выбор путей дифференцированного развития клеток в ходе эмбриогенеза закрепляется на уровне точной передачи наследственной информации при пролиферации того или иного типа дифференцированных клеточных линий. Поэтому изменения в распределении метилированных сайтов в процессе эмбрионального развития могут быть положены в основу привлекательной, хотя и непроверенной еще гипотезы, объясняющей каким образом может наследственно закрепляться выбранный путь дифференцированного развития различных зародышевых клеток. [c.229]


    Таким образом, комбинационная регуляция активности гена весьма эффективна малое число регулирующих элементов может детерминировать нормирование сложных биологических объектов В гл. 16 будет показано, как эта система функционирует в ходе развития [c.179]

    Казалось бы, что на рубеже 70-х гг. молекулярная биология достигла определенной степени завершенности были установлены структура [1347] и механизмы репликации ДНК, провозглашена центральная догма экспрессии гена (транскрипция, трансляция), выяснены основные аспекты регуляции активности гена. В этот период главным объектом молекулярно-генетических исследований были микроорганизмы. Переход к эукариотам (включая человека) встретился с дополнительными проблемами и трудностями, и кроме того, существовавшие в то время методы не позволяли рассчитывать на получение принципиально новых результатов. Стремительный прорыв в развитии молекулярной генетики в начале 70-х гг. стал возможен благодаря появлению нового экспериментального инструмента-рестрикционных эндонуклеаз. Был открыт путь для широкомасштабного получения генных продуктов (физиологически значимых белков) и для генетического манипулирования с различными организмами. Наши знания о структуре и функции генетического материала у эукариот, включая человека, заметно пополнились. Новые, совершенно неожиданные факты, имеющие как теоретическое, так и практическое значение, были открыты в разных областях, таких, как действие гена, популяционная генетика, эволюция и генетическая консультация, включая пренатальную диагностику (разд. 4.3 и 9.1). Достигнутые успехи заставили ученых задуматься об этической стороне манипулирования с человеческим зародышем, об опасности возникновения возбудителей в процессе генно-ин-женерных исследований. Многие из этих вопросов были подняты самими учеными, активно работающими в данной области. В настоящее время большинство исследователей считает, что опасения, касающиеся [c.122]

    ОТНОСЯТСЯ повторения в сто, тысячи и даже миллионы раз довольно длинных участков ДНК, обычно порядка 400—2000 нуклеотидных пар. По-видимому, эти повторяющиеся последовательности, иногда называемые также избыточной ДНК, участвуют в регуляции активности генов. Наконец, иногда возникают дупликации, приводящие к эволюции новых биохимических функций. Наиболее известный пример таких дупликаций дает эволюция глобинов — белков. [c.113]

    Наука генетика. В настоящее время генетика представляет собой высокоразвитую науку. Она имеет мощную и глубоко разработанную теорию. Глубина теории определяется сложностью проблем, которые она в состоянии сформулировать, а оценить ее можно по трем характерным признакам широкому применению формализованных понятий, наличию представлений о механизмах и высокой способности объяснять различные явления. Основное представление генетики-это понятие о гене как единице хранения, передачи и реализации наследственной информации. Со времени пере-открытия законов Менделя в 1900 году началось изучение генетических механизмов. Оно привело к расшифровке генетического кода, описанию процессов транскрипции, трансляции и функционирования белков, кодируемых определенными генами. В настоящее время уточняется тонкая структура генов, активно проводятся исследования по регуляции активности генов в ходе развития и функционирования организмов. [c.10]

    Физиолог, наоборот, пытается читать книгу. Однако он часто заранее предполагает, что все экземпляры книги должны быть полностью идентичны к различиям он относится как к отклонениям. Иными словами, физиология изучает не элементы как таковые, а способ их взаимодействия в сложных функциональных системах Физиологов больше занимает интеграция взаимодействующих систем, чем исследование их компонентов. Представление о регуляции активности генов на основе механизмов обратной связи, например модель Жакоба и Моно для бактерий и некоторые представления генетики развития высших организмов, в настоящее время приводят многих генетиков к пониманию полезности системного подхода к явлениям. Поэтому можно надеяться, что разрыв между генетикой и физиологией в ближайшем будущем будет устранен. Возросший интерес специалистов по генетике человека к генетическим аспектам соматических заболеваний и реакций на такие воздействия, как питание и стресс, несомненно окажет влияние на те области медицины, которым до сих пор генетика приносила сравнительно немного практической пользы. [c.17]

    Развитие цитогенетики в 1956-1960 гг. явилось именно такой революцией возникла новая область исследований. Теперь любые рассуждения о регуляции активности генов, их сцеплении, структуре генетического материала, спонтанных и индуцированных мутациях, популяционной генетике, эволюции человека, а также о практическом использовании генетических знаний в профилактике наследственных болезней могли оказаться устаревшими без учета данных и новых представлений цитогенетики человека. Правда, с точки зрения экспериментальной генетики цитогенетика человека выглядела скромно многие её достижения можно было рассматривать как запоздалое приложение к человеку тех идей, которые были известны давно, иногда более полувека тому назад. Однако [c.39]


    Так же как и в случае трансляции мРНК, регуляция выражения генов включает ряд взаимодействий между нуклеиновыми кислотами и белками, определяемых слабыми связями. Поэтому весьма вероятно, что температура может существенно влиять на выражение генов. И здесь, подобно тому как мы это видели во многих других случаях термических эффектов в системах, стабилизируемых слабыми связями, возникает потенциальная возможность пользы и вреда . Мы сначала кратко рассмотрим ряд примеров, относящихся к бактериям, у которых регуляция активности генов, как известно, подвержена влиянию температуры, [c.227]

    Чем же можно объяснить нарушения, вызываемые хромосомными аберрациями Ответ таков эти синдромы обусловлены, вероятно, не наличием избыточной активности или дефекта отдельных генов, а главным образом нарушениями регуляции активности генов во время эмбрионального развития. Следовательно, анализ аутосомных аберраций может оказаться полезным для понимания механизмов генной регуляции у человека. В случае такой специальной проблемы, как развитие половых признаков, изучение больных с численными и структурными аберрациями половых хромосом оказалось весьма поучительным. Однако до подробного обсуждения аберраций этого типа полезно сделать несколько замечаний относительно сегрегации и пренатальной селекции несбалансированных транслокаций, а также относительно возможных клинических признаков сбалансированных транслокаций. Кроме теоретического интереса эти вопросы важны с точки зрения генетического консультирования-для оценки повторного риска. [c.92]

    НЫМ дрейфом (разд. 7.2.3). Кроме того, анализ рестрикционного полиморфизма необходим для понимания молекулярных механизмов мутаций (разд. 5.1.4) важен он и для выяснения роли некодирующей ДНК в регуляции активности гена (разд. 4.7). По предварительным данным полиморфизм ДНК Х-хромосомы отмечается реже, чем для ДНК аутосом [328]. Это соответствует выводу Оно [156] о том, что Х-хромосома намного более консервативна в эволюции. Возможно, что функциональные ограничения, касающиеся структуры Х-хромосомы, приложимы не только к кодирующим генам, но и ко всему генетическому материалу этой хромосомы. [c.140]

    После активации промотора Prm транскрипция гена с1 автоматически поддерживается на постоянном уровне при избыточном накоплении белка I он присоединяется к участку Орз, что делает невозможной дальнейшую транскрипцию с промогора Р м активность этого промотора восстанавливается, как только концентрация репрессора снижается до уровня, при котором его хватает только для присоединения к участкам Ori и Орг. Такой способ регуляции активности гена при помощи продукта этого же гена называют аутогенной регуляцией. [c.295]

    В системе регуляции активности генов у эукариот имеется дополнит, уровень, отсутствующий у бактерий, а именно-перевод всех нуклеосом (повторяющихся субъединиц хроматина), входящих в состав транскрипционной единицы, в активную (деконденсированную) форму в тех клетках, где данный ген должен быть функционально активен. Предполагается, что здесь задействован набор специфических Р. б., не имеющих аналогов у прокариот. Эти белки не только узнают специфич. участки хроматина (или,ДНК), но и вызы-427 [c.218]

    Итак, регуляция активных генов осуществляется с помощью различных регуляторных белков-репрессоров и активаторов транскрипции. С физической точки зрения наиболее интересным свойством этих белков является их способность у.чнавать специфические нуклеотидные последовательности ДНК. Установлено, что в комплексе с регуляторными белками сохраняется обычная -подобная конформация ДНК. Узнавание белками их специфических связывающих мест на ДНК основывается на прямом чтении белком последовательности оснований в узкой и/или широкой бороздках ДНК. Специфичность связывания обеспечивается образованием большого числа водородных связен и других слабых взаимодействий между функциональными группами белка и основаниями ДНК. Одна и та же последовательность оснований может быть прочитана как со стороны узкой, так и со стороны широкой бороздки ДНК. Однако характер и пространственное расположение функциональных групп оснований — потенциальных доноров и акцепторов водородных связей— в узкой и широкой бороздках ДНК значительно отличаются. Поэтому часто говорят о двух каналах передачи информации. В узкой бороздке ДНК атомы 02 пиримидинов и N3 пуринов могут служить в качестве акцепторов водородных связей, в то время как 2-аминогруипа гуанина часто является донором водородной связи. Важной особенностью структуры ДНК является пространственная эквивалентность положений всех этих акцепторных групп для пуриновых и пиримидиновых оснований, находящихся в одной и той же полинуклеотидной цепи. Кроме того, атомы N3 пурина и 02 пиримидина в каждой паре оснований связаны осью симметрии второго порядка. Поэтому при чтении текста со стороны узкой бороздки ДНК АТ- и ГЦ-пары легко узнать, в то время как АТ- и ТА-пары различить трудно, так как оии несут геометрически эквивалентные группы сходной химической природы. [c.290]

    Само деление клеток, начиная с появления двух первых бластомеров, есть результат внутриклеточных взаимодействий, регуляции активности генов веществами цитоплазмы п клеточной мембраны. Дифференцировка на ранней стадии (бластула) определяется двумя причинами, имеющими самый общий характер. Первая из них — неоднородное распределение вещества в цитоплазме исходной зиготы, вторая — неоднородность среды внутри клеточного шара, получающегося в результате дробления. II то, и другое означает наличие позиционной информации (Вольперт). Наряду с этими факторами онтогенез определяется контактной и гуморальной регуляцией. [c.574]

    В 1961 году, основываясь на данных, полученных с помощью тщательного генетического и биохимического анализа образования Р-галактозидазы у Е. oli, Ф. Жакоб и Дж. Моно [45] выдвинули концепцию регуляции активности генов, получившую название теории оперона. Эта теория, а также модель ДНК Уотсона — Крика оказались наиболее плодотворными концепциями молекулярной биологии. [c.70]

    Природа дефектов ооплазмы, вызываемых этими мутациями, известна только в очень немногих случаях. На основе имеющихся в настоящее время данных невозможно определить, приводит ли большинство из этих мутаций к нарушению общего метаболизма или же к нарушению функций, необходимых для регуляции активности генов в эмбриональных клетках в процессе развития. Впрочем, по крайней мере некоторые из мутаций с материнским эффектом оказывают сильное влияние на развитие эмбриона. [c.262]

    Сайт мономера белка его, контактирующий с ДНК, образован последовательностью из 20 аминокислот, формирующих две а-спирали, которые разделены коротким витком. Такой фрагмент спираль-виток-спираль обнаружен и у ряда других бактериальных сайт-специфических ДНК-свя-зывйющих белков, трехмерные структуры которых известны (рис. 9-13). Более того, анализ аминокислотных последовательностей (обнаруженная при этом гомология) свидетельствует о том, что такой фрагмент присутствует и в составе других белков, участвующих в регуляции активности генов у бактерий, дрожжей и дрозофилы. [c.105]

    У многоклеточных организмов дифференцировка клеток происходит в результате экспрессии разных генов одного и того же генома, хотя типы клеток на удивление мало отличаются друг от друга по содержанию белков. Экспрессия больщинства генов контролируется на уровне транскрипции, что не исключает существенной роли посттранскрипциоиного контроля. Контроль на уровне транскрипции зависит от регуляторных белков, связывающихся с определенными последовательностями ДНК. В результате присоединения таких белков соответствующие гены либо включаются (позитивный контроль) либо выключаются (негативный контроль). Гены высших эукариот обычно регулируются путем комбинационного воздействия нескольких белков-регуляторов, осуществляющих позитивный и негативный контроль. Главные регуляторные белки играют в системе регуляции активности генов особую роль благодаря тому, что они влияют на активность сразу многих генов например, экспрессия гена туо D1 может превратить фибробласт в миобласт. [c.183]

    В данной главе мы обсудим некоторые биохимические особенности опухолевых клеток. Главная цель обсуждения—сформулировать биохимические причины свойственного им неконтролируемого роста, способности к инвазии и метастазированию. В настоящее время полагают, что одной из причин злокачественного перерождения клеток служит изменение структуры и регуляции активности генов, контролирующих их рост, а также нарушение межклеточных взаимодействий. Некоторые виды опухолевых заболеваний (например, ряд лейкозов) являются результатом нарушения дифференцировки соответствующих клеток. Сведения о молекулярных механизмах этого процесса крайне ограничены. По мнению многих ведуцдих специалистов-онкологов, усилия исследователей должны быть сосредоточены на изучении онкогенов и ростовых факторов. Именно это дает возможность разобраться в природе нарушений контроля роста опухолевых клеток, дифференцировки, а также межклеточных взаимодействий. Настоящая глава посвящена обсуждению проблемы онкогенов и факторов роста. [c.352]


Библиография для Регуляция активности генов: [c.215]    [c.411]   
Смотреть страницы где упоминается термин Регуляция активности генов: [c.66]    [c.186]    [c.500]    [c.66]    [c.186]    [c.294]    [c.141]    [c.416]    [c.500]    [c.43]    [c.132]    [c.339]    [c.341]    [c.342]    [c.199]    [c.206]    [c.290]   
Генетика человека Т.3 (1990) -- [ c.17 ]




ПОИСК





Смотрите так же термины и статьи:

Регуляция



© 2024 chem21.info Реклама на сайте