Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пары оснований по Уотсону Крику

    Установление структуры ДНК и РНК оказалось возможным в результате одновременных усилий многих исследователей. То, что известно сейчас о строении этих нуклеиновых кислот, было выяснено благодаря применению электронной микроскопии для наблюдения некоторых самых маленьких молекул ДНК, рентгеновского дифракционного анализа, расщеплению молекул нуклеиновых кислот на составные части и, наконец, благодаря блестящей догадке Уотсона и Крика о существовании двойной спирали. В частности, химический анализ показал, что в молекулах ДНК всегда содержится приблизительно равное число единиц Т и А, а также равное число единиц Ц и Г. Это подтвердило догадку, что пары оснований Т и А, а также Ц и Г связаны друг с другом. Генетический код определяется последовательностью комбинаций этих оснований, которая может иметь, скажем, такой вид АТ, АТ, ГЦ, АТ, ГЦ, АТ, ГЦ, ГЦ, ГЦ и т.д. [c.486]


    В форме В, описанной моделью Дж. Уотсона и Ф. Крика, на один виток спирали приходится 10 пар оснований, шаг спирали 3,4 нм, диаметр 1,8 нм, угол наклона к оси 0°. Форма В, по-видимому, благоприятна для процесса репликации. В форме А на один виток приходится 11 пар оснований, шаг спирали 2,8 нм, угол наклона на плоскости оснований к оси составляет 20°. Форма А является предпочтительной для процессов транскрипции. Форма С, выявленная у ряда вирусов и в составе надмолекулярных структур хроматина, имеет 9,3 пары оснований в витке с углом наклона — 5°. [c.181]

Фиг. 27. А. Схематическое изображение молекулы ДНК по Уотсону—Крику [40]. Две фосфатно-сахарные цепи изображены в виде лент, а пары оспо-ваний, удерживающих одну цепь возле другой,— в виде горизонтальных перекладин. Б. Рисунок модели двойной спирали ДНК. Пунктирные линии соответствуют водородным связям между основаниями. Фиг. 27. А. Схематическое <a href="/info/1744245">изображение молекулы</a> ДНК по <a href="/info/714910">Уотсону—Крику</a> [40]. Две фосфатно-сахарные цепи изображены в виде <a href="/info/22992">лент</a>, а пары оспо-ваний, удерживающих одну цепь возле другой,— в виде горизонтальных перекладин. Б. Рисунок <a href="/info/1363135">модели двойной</a> спирали ДНК. Пунктирные линии соответствуют <a href="/info/917">водородным связям</a> между основаниями.
    Структура пар оснований в том виде, как это было предложено Уотсоном и Криком, изображена на рис. 2-21. Хотя дифракционные данные показывают, что в ДНК присутствуют именно такие пары оснований, рассматривались и другие варианты. На рис. 2-25 изображены очертания пар оснований с указанием групп, способных к образованию водородных связей. Число групп, которые в качестве доноров или акцепторов электронов могли бы участвовать в этом процессе, получается до- [c.134]

    Как уже отмечалось, образование комплементарных пар оснований (А-Т- иО-С-пар) было впервые постулировано Дж. Уотсоном и Ф. Криком при создании модели двойной спирали ДНК- Строение этих пар показано на рис. 12. Обе пары близки по форме и имеют одинаковые размеры. Они связаны осью симметрии второго порядка, но при этом псевдосимметричны при повороте на 180 вокруг оси, лежащей в плоскости рисунка (с выходом оснований из его плоскости), совпадают только СГ-атомы. [c.24]

    Исходная модель Уотсона-Крика для паракристаллической 5-формы ДНК была уточнена Уилкинсом [30] (рис. 22.1.1). Ее принципиальные особенности заключаются в том, что это закрученная правосторонняя двойная спираль, имеющая 10 остатков на период в 3,4 нм. Пары оснований фактически перпендикулярны оси спирали, а углеводные кольца практически планарны (предполагается, что они находятся преимущественно в С2-энйо-конфор-мации и под прямыми углами к основаниям). Фосфатные остатки расположены как бы на цилиндрической поверхности с радиусом примерно в 0,9 нм, считая от оси спирали, которая лежит между водородными связями, соединяющими пары оснований. [c.45]


    Третичная конформация поддерживается за счет дополнительного образования пар и триплетов оснований, преимущественно не уотсон-криков-ского типа. Образование неко- [c.65]

    И существуют пары только определенного вида. Донохью [534] показал, что при менее строгих ограничениях, но без допущения о беспорядочном распределении остатков возможны и другие комбинации. Однако во всех моделях значения структурных параметров Н-связи одни и те же расстояния N — Н...0 и N — Н...Ы равны соответственно 2,85 и 3,00 Л, отклонения от линейности Н-связи не превышают 15°, и циклические основания находятся в одной плоскости. Например, Полинг и Кори, исходя из имевшихся в то время данных, использовали значения 2,80 А (Ы — Н. . . О) и 3,00 Л (М — Н. . . Ы) [1591]. Они допускают некоторое изменение в длине связи, поскольку это обеспечивает возможность образования трех Н-мостиков, как показано на рис. 95. Можно думать, что дополнительная связь еще больше повышает специфичность пар оснований, которую предположили Уотсон и Крик. [c.274]

    Итак, совокупность данных ИК- и ЯМР-спектроскопии свидетельствует о строгой специфичности при образовании пар оснований в полном соответствии с гипотезой Уотсона—Крика. Однако [c.221]

    В структуре Уотсона и Крика число витков двойной спирали равно Vio общего чнсла пар оснований в молекуле. Однако прч изменении условий (температуры, pH среды и т. д.) это число может уменьшаться (см. стр. 259). Число а равно также числу витков каждой из цепей вокруг оси спирали или вокруг другой цепи. [c.257]

    Модель Уотсона — Крика не только дает приемлемое объяснение своеобразия каждого гена и его точного воспроизведения, но, кроме того, она хорошо согласуется с нашими представлениями о мутациях. Вероятно, мутации происходят в результате изменения последовательности пар оснований в молекулах нуклеиновых кислот. Эти изменения, которые в свою очередь вызывают образование измененных белков, могут, например, состоять в замене одной пары оснований другой парой. Речь может идти также о структурных изменениях положения (инверсии или транслокации) или, наконец, о делециях или дупликациях пар оснований. [c.274]

    И данные ранних биохимических опытов, и выводы из построенной модели приводили к заключению, что между А и Т и между О и С (так н ьюаемые пары оснований Уотсона и Крика) происходит комплемохтарное спаривание. Биохимические анализы препаратов ДНК, вьщеленных из разных видов, показали, что, хотя нуклеотидный состав ДНК широко варьирует (например, содержание А у разных видов бактерий колеблется от 1 3 до 36%), наблюдается общая закономерность количество С всегда равно количеству С и количество А-количеству Т. Построенная модель показала, что число эффективных водородных связей, которые могут образоваться между О и С или между А и Т будет в этом случае больше, чем при любой другой комбинации. Таким образом, двухспиральная модель ДНК изящно объяснила количественные биохимические результаты. [c.124]

    Я был бы неправ, если бы оставил читателя с ощущением, что великие открытия могут быть сделаны как-то походя. И пример Уотсона при внимательном рассмотрении как раз опровергает такое представление. Просто за внешней бравадой автора Двойной спирали надо увидеть то, что было на самом деле. А была денная и нощная концентрация мысли на том, как же устроена ДНК. Был крайне важный контакт с химиком Джерри Донохью, в результате которого родилась идея комплементарных пар оснований аденин-тимин и гуанин - цитозин, краеугольный камень двойной спирали. Было и постоянное подогревание Фрэнсиса Крика в те минуты, когда тот уже не видел дальнейшего пути и терял интерес к проблеме. И была прежде всего уверенность в том, что ген — это ДНК, тогда как подавляющее большинство биологов думали, что ген — это белок. [c.132]

    На основании рентгеноструктурного анализа и ранее полученных данных о строении нуклеотидов и нуклеиновых кислот Уотсон и Крик предложили для ДНК структурную модель, согласно которой макромолекула ДНК имеет форму спирали, причем в спираль закручены одновременно две молекулы ДНК (двухцепочечная спиральная структура). Эта двойная спираль имеет одну общую ось и построена так, что основания обеих цепей расположены внутри спирали, а углеводные остатки с фосфатными группами — снаружи спирали (рис. 51, 52). При этом основания одной молекулярной цепи с основаниями другой цепи образуют строго фиксированные пары, соединенные друг с другом водородными связями. Симметричное построение спирали требует постоянства межспиральных расстояний, а это возможно лишь в том случае, если размеры пар оснований, расположенных друг против друга, будут одинаковыми. Такому условию отвечают пары, построенные из одного пуринового и одного пиримидинового основания аденин — тимин и цитозин — гуанин, что обеспечивает и максимальное число водородных связей в спирали  [c.362]

    Исходя из гипотезы, можно объяснить все наблюдаемые отклонения от образования классических пар оснований (Аи, СО) в спирали Уотсона—Крика. Так, антикодон с О иа б -коние может рпялмпат л  [c.237]

    Спаривание оснований осуществляется по следующему механизму аденин образует пары с тимином (в молекуле РНК - с урацилом) за счет двух водородных связей, а гуанин - с цитозином за счет трех водородных связей (модель Уотсона-Крика). Д. Во и А. Рич [90] установили, что при совместной кристаллизации обычных мономерных производных Ade и Ura наблюдается образование пар A-U, однако они никогда не являются уотсон-криковскими. В этих комплексах роль акцептора водородной связи играет азот N(7) имидазольной части аде-нинового кольца. Эта структура известна как хугстеновская, или ими-дазольная. Расчет методом молекулярных орбиталей, выполненный Пульманом и соавторами [91] дает для пары аденин-тимин следующую последовательность структур в порядке убывания их стабильности имидазольная структура, обратная имидазольная структура, уотсон-криковская структура. В случае G- пар имеет место только уотсон- [c.235]


    Многочисленные дебаты относительно корректности этой структуры касались преимущественно модели водородных связей между комплиментарными парами оснований, аденин-тимин и гуанин-цитозин. Кристаллографические исследования бинарных комплексов подходящих производных этих оснований выявили возможность существования водородных связей, альтернативных использованным Уотсоном и Криком в структурах (29) и (30). Действительно, до 1973 г. обнаружение уотсон-криковских структур было скорее исключением, чем правилом. В 1973 г. Рич и его коллеги получили кристаллы динатриевой соли динуклеозидфосфата гАри. Эта самокомплиментарная молекула существует в кристалле как сегмент правовращающей антипараллельной двойной спирали, содержащей уотсон-криковские водородные связи (см. разд. 22.1.3.4), [c.45]

    Необходимо указать, что конфигурация двойной спирали ДНК сильно меняется в зависимости от количественного содержания воды и ионной силы окружающей среды. Методами рентгеноструктурного анализа доказано существование по крайней мере 6 форм ДНК, названных А-, В-, С-, 0-, Е- и 2-формами. Конфигурация двух из них в простейшей форме представлена на рис. 3.1, б и в. Можно увидеть, что у А-формы наблюдается некоторое смещение пар оснований от оси молекулы к периферии, что отражается на размерах (2,8 нм—длина одного витка, в котором вместо 10 содержится 11 мононуклеотидов меняется расстояние между нуклеотидами и др.). Если А- и В-формы представляют собой правозакрученную двойную спираль, то 2-форма (зигзагообразная) ДНК имеет левозакрученную конфигурацию, в которой фосфодиэфирный остов располагается зигзагообразно вдоль оси молекулы. Параллельно фосфодиэфирному остову в структуре А- и В-форм ДНК имеются большая и малая бороздки (желобки) — сайты, где присоединяются белки, выполняющие, очевидно, регуляторные функции при экспрессии генов. В настоящее время есть основание считать, что между А- и В-формами ДНК осуществляются взаимные переходы при изменении концентрации соли и степени гидратации. В-форма ДНК больше всего подходит к модели Уотсона и Крика. В этих переходах, которые могут быть вызваны растворителями или белками, очевидно, заключен определенный биологический смысл. Предполагают, что в А-форме ДНК выполняет роль матрицы в процессе транскрипции (синтез РНК на молекуле ДНК), а в В-форме—роль матрицы в процессе репликации (синтез ДНК на молекуле ДНК). [c.110]

    Свободные азотистые основания образуют водородно связанные комплексы в твердом состоянии. Структуры таких комплексов в ряде случаев установлены. Найдены структуры, отличные от структуры Уотсона — Крика. На рис. 7.12 показано строение пары 9-метиладенни—1-метилтимин (МА — МТ), Атомы азота N, в Т и N, в А заблокированы метильными группами для того, чтобы избежать образования дополнительных водородных связей. Мы видим, что атом N, МТ образует водородную связь с имидазольиым азотом МА. Эта структура отлична от структуры Уотсона — Крика. Возможности образования водородных связей между различными атомами азотистых оснований ДНК, а также таутомерия азотистых оснований существенны для мутагенеза. Сильный мутаген — бромурацил (метилированный) изучался в парах с этиладенином и метиладенином. Интересно, что в этих двух близких случаях получаются разные структуры. В первой паре образуются водородные связи Oj—N, и N3—N,, во второй 0 -N. и N3-N,. [c.231]

    Примечательно, что в растворах преимущественная ассоциация оснований происходит в согласии с моделью Уотсона — Крика. Водородные связи возникают в парах АУ, АТ и ГЦ, но не в ГУ, АГ и АЦ. Соответственно не удается получить из раство-pai кристаллы с некомплементарнььми парами. [c.232]

    ДНК базируются на основополагающих работах Уотсона и Крика (1952 г.) [3.4.3]. Из данных рентгеноструктурного анализа и факта определенной упорядоченности структуры ДНК различного происхождения был сделан вывод, что две полинуклеотидных цепи тяжа) закручены в форме двойной спирали (рис. 3.4.1). При этом основания ориентированы перпендикулярно к оси спирали, расстояние между кольцами равно примерно 0,344 нм. На один виток спирали приходится 10 оснований в каждом из тяжей. Оба тяжа спирали удерживаются и стабилизованы за счет водородных связей и ван-дер-Ваальсовых взаимодействий между основаниями. При этом друг против друга располагаются так называемые комплементарные пары оснований тимин и аденин, цитозин и гуанин [3.4.4] (точнее остатки оснований)  [c.665]

    В 1953 г. Джеймс Уотсон и Фрэнсис Крик, основываясь на данных рентгеностр тстурного анализа кристаллов ДНК, прищли к выводу, что нативная ДНК состоит из двух полимерных цепей, образующих двойную спираль (рис. 3.3). Навитые одна на другую полинуклеотидные цепи удерживаются вместе водородными связями, образующимися между комплементарными основаниями противоположных цепей (рис. 3.4). При этом аденин образует пару только с тими-ном, а гуанин - с цитозином. Пара оснований А-Т стабилизируется двумя водородными свя- [c.30]

    Описание последовательности нуклишовой кислоты отображает её первичную структуру. Расположение длинной линейной полинуклеотидной цепи в пространстве отражается в её вторичной структуре. Вторичные структуры ДНК и РНК различны. Согласно модели Уотсона и Крика, в молекулах ДНК полинуклеотидная цепь спирализов а в правую спираль с периодом идентичности 3,4 нм и расстоянием между плоскостями оснований 0,34 нм. Две цепи сплетены друг с другом в закрученную вокруг одной оси двойную спираль так, по на каждый виток спирали приходится 10 пар оснований диаметр спирали равен 2,0 нм. Обе цепи удерживаются друг около [c.116]

    Согласно модели Уотсона — Крика молекула ДНК состоит из двух полинуклеотидных цепей, правозакрученных вокруг общей оси с образованием двойной спирали, имеющей диаметр 1,8— 2,0 нм. Две полинуклеотидные цепи антипараллельны друг другу, т. е. направления образования фосфодиэфирных связей в них противоположны в одной цепи 5 —3, в другой — 3 —5. Пуриновые и пиримидиновые основания направлены внутрь спирали. Между пуриновым основанием одной цепи и пиримидиновым основанием другой цепи возникают водородные связи. Эти основания составляют комплементарные пары. [c.444]

    Реакцию задержки деления следует отличать от полного подавления митоза, наступающего после воздействия больших доз, когда клетка значительное время продолжает жить, но необратимо утрачивает способность к делению. Среди многих проявлений действия излучения на жизнедеятельность клетки подавление способности к делению является наиболее важным. Основной причиной репродуктивной гибели клеток являются структурные повреждения ДНК (одно- и двухнитевые разрывы), возникающие под влиянием облучения. Макромолекулы ДНК состоят из генов и образуют хромосомы, управляющие всей деятельностью клетки. Структура молекулы ДНК в соответствии с моделью Уотсона — Крика представляет собой две длинные цепи нуклеотидов, закрученные относительно друг друга в двойную спираль. Ее можно представить как спиральную лестницу, боковины которой формируются молекулами моносахарида (де-зоксирибозы) и фосфорной кислоты, а перекладины образованы четырьмя парами азотистых оснований аденином (А), цитозином (Ц), гуанином (Г) и тимином (Т) (рис. 4.2). [c.39]

    В твердой форме эта кпслота обладает кристаллическим строением (что подтверждается четкой картиной диффракцни рентгеновских лучей), высокой плотностью и может быть вытянута в нити. Несколько лет назад Астбери [114] предложил для дезоксирибонуклеиновой кислоты плотно упакованную структуру, в которой остатки дезоксирибозы и основания находятся в слоях, разделенных фосфатными связями. Сравнительно недавно Уотсон и Крик [115] предложили модель двойной спирали, в которой две спирали переплетаются таким образом, что последовательность остатков в одной спирали противоположна их пос-ледовятрльности в другой. Основания могут быть расположены в такой структуре только определенными парами, по одному на каждой спипяли при этом дня пуриновых основания слишком велики, чтобы пара нз ннх могла разместиться в этой структуре, а два пиримидиновых основания слишком малы. При наличии определенных доказательств было принято, что противоположным компонентом в паре оснований для аденина может быть только тимин, а для гуанина — цитозин. Предполагается, что водородные связи между парами оснований обеспечивают стабильность спиральной структуры дезоксирибонуклеиновой кислоты. Предполагаемое строение ее показано на рис. 46. [c.250]

    Таким образом, на основании изучения резонансных сигналов протонов, связанных с атомами углерода, можно получить лишь ограниченную информацию. Значительно более полезными являются сигналы NH-npoTOHOB пар оснований, участвующих в образовании двуспиральных участков по Уотсону — Крику. В водном рас- [c.431]

    Другой аспект гипотезы Уотсона-Крика состоит в том, что структура двойной спирали ДНК указывает способ, с помощью которого может быть точно воспроизведена содержащаяся в ДНК генетическая информация (рис. 27-13). Поскольку две цепи двойной спирали ДНК структурно комплементарны, их нуклеотидные последовательности несут комплементарную друг по отношению к другу информацию. Уотсон и Крик постулировали, что репликация ДНК в ходе деления клеток начинается с разделения двух цепей, каждая из которьк становится матрицей, определяющей нуклеотидную последовательность новой комплементарной цепи, образуемой с помощью репликативных ферментов. Была выска- зана мысль, что правильность репликации каждой из цепей ДНК должна обеспечиваться точным соответствием и стабильностью комплементарных пар оснований А=Т и 0=С в двух дочерних дуплексах, каждый из которых содержит одну цепь родительской ДНК и новро цепь, комплементарную этой родительской цепи. Было постулировано также, что каждая вновь образованная дочерняя двойная спираль попадает в дочернюю клетку без каких-либо изменений. В гл. 28 мы увидим, как эта гипотеза была экспериментально подтверждена. [c.864]

    На основании рентгеноструктурного анализа волокон ДНК и принципа ком-плементарности оснований в ДНК Уотсон и Крик пришли к заключению, что нативная ДНК состоит из двух антипараллельных цепей, скрученных в двойную спираль. Комплементарные основания А—Т и G—С образуют с помощью водородных связей пары внутри спирали, а гидрофильный сахарофосфатный остов располагается с наружной стороны макромолекулы. Пары оснований плотно уложены в стопку перпевдику-лярно длинной оси на расстоянии [c.890]

    Полученные результаты дали возможность Уотсону и Крику сформулировать (в 1953 г.) блестящую теорию о структуре ДНК. Согласно модели Уотсона-Крика, полинуклеотидные цепи закручены в двойную спираль вокруг воображаемой оси. Обе цепи скреплены водородными связями, соединяющими основания, которые обращены внутрь спирали (рис. 2,11) При этом если учесть расстояния и условия образования связи, то против каждого аденина должен находиться тимин, а против каждого гуанина-цитозин. На один виток спирали приходится около 10 пар оснований. Последовательность оснований в двух цепях по необходимости комплементарна. Направление цепей противоположно (5 -+ 3 и 3 -+5 ). Длина хромосомы Es heri hia oli составляет примерно 1,4 мм. Один микрометр одноцепочечной ДНК соответствует относительной молекулярной массе около 2-10 , или примерно 3000 пар оснований. Таким образом, хромосома Е. соН имеет молекулярную массу 2,9 10 . [c.34]

    ДНК — это тот материал, из которого состоят гены. Нить ДНК состоит из большого количества молекул дезоксирибозы, линейно связанных фос-фодиэфирными связями в 3 - и 5 -положениях молекулы сахара. Каждая молекула дезоксирибозы связана в положении Г с пурином или пиримидином. Таким образом, полинуклеотидная цепь представляет собой длинный остов, состоящий из остатков сахара и фосфатных групп, соединенных с пуриновыми основаниями — аденином (А) и гуанином (Г) и пиримидиновыми основаниями — цитозином (Ц) и тимином (Т), расположенными вдоль основной оси молекулы через строго определенные интервалы. Однако нить ДНК представляет собой не одинарную цепь, а двойную, в которой расстояние между осями цепей всегда поддерживается постоянным благодаря тому, что А из одной цепи всегда связывается только с Т из другой цепи, а Г — с Ц. Эти взаимодействия определяются размерами и формами оснований, составляющих каждую пару оснований. Возникающие при этом водородные связи определяют структурную стабильность ДНК- Однако в соответствии со знаменитой моделью Уотсона — Крика эти две цепи ДНК не просто тянутся вдоль друг друга, подобно железнодорожным рельсам, а закручены относительно друг друга, образуя периодическую двойную спираль пары оснований при этом располагаются в плоскости, перпендикулярной оси спирали. Случайный характер распределения четырех оснований вдоль цепи ДНК мог бы привести к возникновению астрономически боль- [c.69]

    За последнее десятилетие генетика претерпела быструю эволюцию. Составной частью методов генетики микроорганизмов стали значительно усовершенствованные методы биохимии и биофизики. Генетические исследования физической природы генов были ускорены появлением работы Уотсона и Крика о репликации первичной генетической информации. В свете этих достижений термин ген в настоящее время редко используется без расшифровки. В микробиологической генетике ему, по сути дела, нет адекватного значения. Для обозначения соответствующего понятия у микроорганизмов появились новые термины с более точным значением, например рекон (Бензер [1]). Представление о половом размножении как единственном методе генетической рекомбинации претерпело изменение и включило альтернативные механизмы, например трансформацию, конъюгацию у бактерий, парасексуализм в грибах и др. (Понтекорво [2]). Разрабатываются методы изучения последовательности пар оснований в нуклеиновых кислотах и механизма кодирования, управляющего последовательностью аминокислот в белках приближается решение и многих других фундаментальных проблем генетики. [c.140]

    Смысл правила Чаргаффа для ДНК стал понятным после выдвижения Уотсоном и Криком своей модели структуры ДНК эквивалентно содержание тех пар оснований, которые являются комплементарными при образовании двухцепочечцого комплекса. Состав одноцепочечных ДНК, например ДНК фага ФХ174, не подчиняется правилам Чаргаффа. [c.60]

    Согласно предположению Уотсона — Крика, четыре основания — аденин, тимин, гуанин и цитозин, которые можно обозначить буквами А, Т, Г и Ц,— располагаются в некоторой характерной последовательности на одной из двух полинуклеотидиых цепей гена и в комплементарной последовательности на другой полинуклеотидпой цепи. На каждом уровне находится одна из следующих четырех пар азотистых оснований — —А= —=Т—, —Т= = =А—, —Г= ==Ц, —Ц= = Г—. Двойные и тройные черточки обозначают две или три водородные связи, как показано на рис. 24.4. [c.687]


Смотреть страницы где упоминается термин Пары оснований по Уотсону Крику: [c.187]    [c.214]    [c.238]    [c.133]    [c.135]    [c.191]    [c.155]    [c.159]    [c.593]    [c.91]    [c.952]    [c.69]    [c.593]    [c.228]    [c.281]   
Биохимия Том 3 (1980) -- [ c.238 ]




ПОИСК







© 2025 chem21.info Реклама на сайте