Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Третичная конформация

    Со структурной точки зрения у белков различают первичную, вторичную, третичную и четвертичную структуры. Под первичной структурой, как и в случае пептидов, понимается точная последовательность отдельных аминокислотных остатков в макромолекуле. Вторичная структура определяется тем, что вследствие образования внутримолекулярных водородных связей макромолекулы предпочитают находиться в определенных конформациях (чаще всего это а-спираль — белковая цепь свернута в правовинтовую спираль, а расположенные друг [c.192]


    Третичная конформация поддерживается за счет дополнительного образования пар и триплетов оснований, преимущественно не уотсон-криков-ского типа. Образование неко- [c.65]

    Благодаря новейшим данным о стереохимических изменениях, происходящих при ферментативном катализе и регуляции активности ферментов, мы можем ответить на эти вопросы с достаточной определенностью. В том, что структура белков существенно зависит от слабых связей, действительно есть больщой смысл . Взаимодействие ферментов с субстратами и с модуляторами ферментов в большинстве случаев, если не всегда,, сопровождается изменениями в третичной и четвертичной структуре фермента. С точки зрения стереохимии эти изменения могут быть большими или незначительными для биологической, функции они абсолютно необходимы. Скорость, с которой фермент катализирует определенную химическую реакцию, вероятно, зависит от того, насколько быстро его конформация может подвергнуться обратимому изменению в результате фер-мент-субстратных взаимодействий. Надлежащая реакция фермента на присоединение регулирующего метаболита тоже зависит от способности фермента изменять свою структуру высшего порядка. В одних случаях эти изменения затрагивают третичную конформацию фермента, в других (например, в случае гликогенфосфорилазы) регуляторный эффект связан с изменением четвертичной структуры. [c.215]

    Следует также отметить, что во многих случаях утрате четвертичной структуры, вероятно, предшествует какое-то изменение третичной конформации это первоначальное изменение настолько ослабляет четвертичную структуру, что становится возможной дезагрегация субъединиц. [c.219]

    Хотя изучение термически обусловленных изменений в третичной конформации ферментов еще только начинается, полученные данные уже дают основание полагать, что изменения температуры в биологическом диапазоне могут приводить [c.219]

    К значительной модификации третичной структуры ферментов. В отличие от скачкообразных изменений, происходящих при распаде четвертичных агрегатов, структурные (и функциональные) изменения, наблюдаемые при воздействии температуры на третичную конформацию, не столь значительны и носят характер постепенных сдвигов. По-видимому, изменение третичной структуры происходит в довольно широком диапазоне температур, и оно часто приводит лишь к изменению, но не к утрате каталитической способности. [c.220]

    Возвраш аясь к принципу Анфинсена, следует признать, что он справедлив в отношении того, что первичная структура в ряде белков определяет характер стабильной вторичной и третичной конформации белка. Однако, этот принцип не может означать тождественности конкретных путей сворачивания белка в клетке и его ренатурации в растворе. [c.254]


    Таким образом, предельно совершенным молекулярным аппаратом перемещения в пространстве будет предельно совершенный фермент, максимально возможно изменяющий свою третичную (конформацию) или четвертичную (конфигурацию комплекса макромолекул) структуру сопряженно с превращением субстрата в продукт [58]. [c.171]

    Все перечисленные факторы по-разному влияют на относительную устойчивость изомерных углеводородов. При низких температурах, когда устойчивость углеводородов определяется в основном их энтальпией, термодинамически значительно более устойчивы соединения, имеющие циклогексановые кольца с жесткой кресловидной конформацией. Увеличение числа заместителей в кольцах приводит к увеличению их относительной устойчивости, так как всякое появление третичного, или тем более четвертичного, атома углерода сопровождается значительным энергетическим выигрышем. Однако количество заместите.тей в кольцах имеет свое оптимальное значение, так как при большом числе их начинают появляться энергетически невыгодные внутримолекулярные взаимодействия между замещающими радикалами. Определенные экспериментальным путем равновесные соотношения структурных изомеров в углеводородах ряда циклогексана хорошо согласуются с теми же данными, полученными расчетным путем на основании учета числа заместителей в кольце и числа скошенных бутановых взаимодействий, характерных для каждой структуры. [c.143]

    Скорость изомерных перегруппировок в значительной мере определяется конфигурационными характеристиками исходной молекулы, причем в ряде случаев наблюдается типичное стерическое содействие, возникающее за счет заслоненных конформаций в молекулах, участвующих в перегруппировках. По своему абсолютному значению скорости изомерных перегруппировок в циклических углеводородах колеблются в весьма широких пределах (от 1 до 10 ), причем значительно быстрее протекают реакции, идущие без изменения числа третичных атомов углерода. В механизме [c.244]

    Полипептидная цепь, имеющая ту или иную вторичную структуру (т. е. форму а-спирали, -структуры или неупорядоченную конформацию), может приобретать еще одну форму упорядочения — третичную структуру. Именно она и определяет в значительной степени специфические биологические свойства каждого конкретного белка. Так называемая денатурация — утрата специ- [c.344]

    Полипептидная цепь, имеющая ту или иную вторичную структуру (т. е. форму а-спирали, 3-форму или иную конформацию), может приобретать еще одну форму упорядочения — третичную структуру. Именно третичная структура и определяет в значительной степени биологические свойства каждого конкретного белка. Так называемая денатурация— утрата специфических свойств природного белка — связана прежде всего с изменениями третичной (а также вторичной) структуры. [c.334]

    Поиск низкоэнергетичных конформаций в нашей работе основан на упрощенном представлении структуры белка и использовании порогового энергетического функционала, аналогичного применяемым в других исследованиях по расчетам третичной структуры [5,12-161. [c.142]

    Блок-схема алгоритма расчета третичной структуры белковой молекулы приведена на рис. 7. На получаемые конформации налагались как энергетические, так и геометрические ограничения о-спирали не должны пересекаться (минимальное допустимое расстояние между осями о-спиралей - 3.5 А) концы а-спиралей, соединенных участками полипептидной цепи, не могут расходиться более чем на Мк2.5 А (М - число аминокислот между концами а-спиралей). [c.148]

    Дальнейшее развитие этого подхода состоит в реализации третьего этапа - перехода в нативное состояние путем локальных трансформаций. Для этого необходимо провести тщательный анализ полученного набора конформаций и осуществить поиск низкоэнергетичных структур вблизи каждой из них при небольшом разбросе параметров, используя алгоритм восстановления атомной структуры белка по упрощенной геометрии. После чего возможна минимизация энергии и получение третичной структуры белка с высокой [c.149]

    Возможно, что в этой конформации вакантная /7-орбиталь взаимодействует с метинным атомом водорода. Действительно, этот водород мигрирует к положительно заряженному углероду вместе с электронной парой, которая связывала его с атомом углерода. Поскольку водород мигрирует с электронной парой, можно говорить о миграции гидрид-иона. В результате этой миграции менее стабильный вторичный катион превращается в более устойчивый третичный катион. [c.198]

    Установленная секвенированием последовательность аминокислот может рассматриваться лишь в качестве одного из уровней структурной организации белка. Она закодирована в соответствующем гене и находится в тесной связи со вторичной и третичной структурами белка, его конформацией и биологической активностью. Образование вторичной и третичной структур [c.374]

    Вторичные и третичные структуры субъединиц, слабо изучены, но представляется, что степень их спирализации в растворе невелика, а их конформация менее компактна, чем у глиадинов. Кроме того, субъединицы с высокой молекулярной массой могут быть достаточно гибкими вследствие высокого содержания в них глицина. Они состоят из последовательности складчатых слабо-оформившихся структур и коротких спиральных последовательностей [52]. [c.213]


    Термин четвертичная структура относится к макромолекулам, в состав к-рьк входит неск. полипептидных цепей (субъединиц), не связанных между собой ковалентно. Такая структура отражает способ объединения и расположения этих субъединиц в пространстве. Между собой отдельные субъединицы соединяются водородными, ионными, гидрофобными и др. связями. Изменение pH н ионной силы р-ра, повышение т-ры или обработка детергентами обычно приводят к диссоциации макромолекулы на субъединицы. Этот процесс обратим при устранении факторов, вызывающих диссоциацию, может происходить самопроизвольная реконструкция исходной четвертичной структуры. Явление носит общий характер по принципу самосборки функционируют многие биол. структуры. Способность к самосборке свойственна и отдельным фрагментам Б.-до-меиам. Более глубокие изменения конформации Б. с нарушением третичной структуры наз. денатурацией. [c.250]

    Таким образом, имеющийся экспериментальный материал однозначно указывает на несостоятельность традиционного представления о пространственной организации глобулярных белков как ансамбля регулярных форм и на отсутствие общности в столь же распространенной искусственной классификации белковых структур на вторичные, супервторичные и третичные. Этот вывод, разумеется, не ставит под сомнение сам факт наличия в конформациях белков локальных структур основной цепи, в той или иной мере обладающих регулярностью. [c.78]

    Связывание мономерного аффинанта, например ингибитора I с ферментом Е, характеризуется константой равновесия К в предположении, что фермент существует в единственной третичной конформации  [c.62]

    Наиболее устойчивая конформация изображена на рис. УП.8.5. Это так называемая стандартная конформация здесь обеспечено трансоид-ное расположение третичных атомов водорода при С — 1 и С — l Ориентация связи 1 — 1 всегда экваториальна дпя обоих колец. Связи 1—Н, 1 -Н и 1 — l лежат в одной плоскости. Связи 2-1-1-6 и 6-1-1-2 образуют трансоидную бутановую цепь. Атомы углерода 1,3,5 и 2,4,6 лежат в одной плоскости. [c.178]

    Итак, создание синтетическим путем макромолекулы с уникальной устойчивой третичной структурой в принципе возможно. Трудно, однако, сказать, какова вероятность отбора при синтезе именно каталитически активной конформации. Тем не менее (даже без закрепленной третичной структуры) полимерные модели привлекают к себе столь широкое внимание, что число работ, посвященных этим системам, исчисляется сотнями. Однако обнаруживаемое увеличение реакционной способности функциональных групп, присоединенных к полимерной цепи, в большинстве изученных систем обусловлено лишь тривиальными эффектами среды (приводящими, например, к кажущемуся сдвигу р/(а) или же локальным концентрированием субстрата на полимере [62]. Те же эффекты играют основную роль и в мицелляр-ном катализе (см. 6 этой главы). Это не удивительно, поскольку мак-ромолекулярные частицы полимерного мыла (типа ХЬУ ) по таким свойствам, как характер взаимодействия гидрофобных и гидрофильных фрагментов друг с другом и с другими компонентами раствора, подвижность отдельных звеньев, диэлектрическая проницаемость и др., близки к мицеллам поверхностно-активных веществ [64]. Рассмотрим некоторые примеры. [c.105]

    Третичная структура белков, обусловленная взаимодействием боковых цепей аминокислот, не приводит к такой высокой упорядоченности структуры, как в предыдущем случае. Помимо водородных связей важным фактором стабилизации третичной структуры является образование дисульфидных связей. Молекула инсулина имеет три таких дисульфидных мостика, два из которых соединяют две отдельные полипептидные цепи в молекулу. Третичная структура часто придает белковой молекуле такую конформацию, при которой гидрофильные группы (ОН, ЫНз, СО2Н) расположены на поверхности молекулы, а гидрофобные группы (алкильные и арильные боковые цепи)[ направлены внутрь, к центру молекулы. [c.302]

    Ферменты — очень сложные органические молекулы, представляющие собой глобулярные белки. Их каталитические центры состоят их ряда атомных групп, природа и взаимное расположение которых в пространстве строго детерминировано, что, собственно, и определяет каталитическую активность фермента, Все структурные и пространственные особенности каталитического центра заданы как последовательностью аминокислотных остатков полипептидной цепи данного белка (первичной структурой), так и упаковкой этой цепи Б фиксированную конформацию белковой глобулы (ее вторичной и третичной структурами Поэтому для химиков нет смысла пытаться построить искусственный структурный аналог такой чудовищно сложной конструкции, добиваясь сходства со свойствами оригинала. Не говоря уже о практически непреодолимых трудностях подобной задачи, она и смысла большого не имеет (если только мы не хотим создать искусственную жизнь). Дело в том, что каждый фермент решает узко специализированную задачу, а эта специализация лишь изредка совпадает с задачами человеческой химии. Смысл всей Проблемы не в этом, а в том, чтобы обеспечить дизайн квазиферментов под реальные задачи (ну, например, расщеплять высшие парафины до низших, т.е. делать бензин из мазута), т. е. не копировать или моделировать живые ферменты, а научится делать ферменте-подобные катализаторы на заказ (не копировать природу, а учиться у нес, воспринять ее методологию, а не результаты )- Кроме того, ферменты как катализаторы для лабораторного или про- [c.477]

    Линдерштрем-Ланг подразделил (1952) изучение структуры белков на три уровня можно изучать первичную структуру — последовательность аминокислот вторичную структуру — конформацию и третичную структуру характер расположения отдельных участков цепи даю-щии пространственную картину, которая присуща глобулярным белкам. Дисульфидные связи играют основную роль в поддержании третичной структуры. Техника эксперимента может быть иллюстрирована ра ми Кендрью2. по -изучению мио глобина -кашалота (1-9(58—1960). [c.710]

    Предположение о том, что 70% цепи находится в спиральной конформации, подтверждается результатами, полученными методом дейтерообмена. Скоулоди (1959) 01бнаружила при раосмотрбн и двухмерной проекции Фурье единичной ячейки миоглобина тюленя, что, несмотря на совершенно различный аминокислотный состав, миоглобины тюленя и кашалота им еюг чрезвычайную сходную третичную структуру. Перутц (1960) на основании трехмерного анализа гемоглобина пришел к заключению, что каждая из четырех субъединиц этой молекулы структурно сходна с миоглобином. При анализе миоглобина с разрешением в 2 А (этого еще недостаточно для атомного разрешения) группа Кендрью (1961) получила возможность сделать некоторые выводы о последовательности части аминокислот в миоглобине. [c.711]

    Из амилолитических ферментов, например, а-амилаза активируется ионами кальция, который способствует сохранению нужной конформации и повышению стабильности третичной структуры макромолекул фермента к денатурации и действию иептидгндролаз. На плесневые а-амилазы стабилизирующее действие оказывают ионы алюминия. Все а-амилазы инактивируются ионами металлов ртути, меди, серебра и ионами галоидов — хлора, брома, фтора и йода. [c.121]

    Рибосомные белки большинства животных представлены в осн. умеренно основными полипептидами, хотя имеется неск. нейтральных и кислых белков. Мол. м. рибосомных белков варьирует от 6 тыс. до 60 тыс. В прокариотической Р. малая субчастица (30S) содержит ок. 20, большая (50S)-ok. 30 разл. белков в эукариотической Р. 40S субчастица включает ок. 30 белков, а 60S-ок. 40 (обычно Р. не содержат двух или неск. одинаковых белков). 1 ибосомиые белки характеризуются глобулярной компактной конформацией с развитой вторичной и третичной структурой они занимают преим. периферич. положение в ядре, состоящем из рРНК. В отличие от вирусных нуклеопротеидов в структурно асим. [c.264]

    По рекомендации Лнндерстрема — Ланга были введены термины первичная, вторичная и третичная структура , характеризующие уровни структурной организации белков. Первичная структура белка дает сведения о числе и последовательности связанных друг с другом пептидной связью аминокислотных остатков. Вторичная структура описывает конформацию полипептидной цепи, возникающую при образовании водородных мостиков между карбоксильными кислородными атомами и атомами амидного азота в составе скелета молекулы. Под третичной структурой понимают трехмерную укладку полипептидной цепи, вызванную внутримолекулярным взаимодействием боковых цепей. [c.363]

    Введенный в 1958 г. Берналом термин четвертичная структура охватывает наблюдающийся у ряда белков процесс ассоциации нескольких ин-тактных полнпептидных цепей в определенный молекулярный комплекс. В этом случае связывание обеспечивают межмолекулярные взаимодействия. Вторичная, третичная н, если есть, четвертичная структуры в сумме дают конформацию белка. [c.363]

    Хотя повышение pH и ионной силы или присутствие липидов способствует агрегации всех глиадинов [10], образование фибрилл наблюдалось только у некоторых а-глиадинов. Ввиду этого возможно, что образование фибрилл вовлекает вторичные специфические взаимодействия, зависящие от конформации основных единиц [114]. Структура других глиадинов может препятствовать образованию фибрилл этого типа. К тому же иммунохими-ческое исследование глиадинов [28] показывает, что а-, р-, у- и ы-глиадины состоят из иммунологически различных белков, т. е. различных по своей третичной структуре. Различие антигенных структур недавно подтверждено методом ELISA [179]. Обнаружены различия в N-концевых последовательностях. Изучение структуры глиадинов с помощью трансмиссионной и сканирующей электронной микроскопии обнаруживает в них не определенную структуру, а аморфную совокупность [55, 142]. [c.198]

    Первый этап влажного прядения волокон состоит в образовании очень вязкого белкового раствора, называемого прядильным раствором белка. Эта операция выполняется путем овод-нения порошка и повышения величины pH добавлением щелочи, обычно NaOH. Прядильные белковые растворы содержат от 10 до 30 % белков и имеют pH в пределах 10—12,5. В ходе перемешивания прядильного раствора белки сильно денатурируют. Четвертичные и третичные структуры постепенно разрушаются, а полипептидные цепи принимают конфигурацию статистического клубка. Такое изменение конформации молекул приводит к очень сильному загустению консистенции прядильного раствора. Затем [c.534]

    Б. Рост и К. Сандер решение видят в отказе от предсказания конформационных состояний отдельных остатков последовательности в пользу вторичных структур у целых сегментов, используя данные о гомологичном белке, трехмерная структура которого известна [222]. Сравнение 130 пар структурно гомологичных белков с отличающимися аминокислот-яыми порядками показало, что значительное отклонение в положениях и цлинах сегментов вторичных структур во многих случаях может происходить в пределах приблизительно одинаковых пространственных форм свернутых цепей. Иными словами, отличия в двух близких аминокислотных последовательностях в большей мере отражаются на вторичных структурах, чем на третичных. Поэтому, полагают авторы, важна не локализация а-спиралей, -складчатых листов, -изгибов и Р-петель с точностью до одного аминокислотного остатка, а их ориентировочное отнесение, совместимое с нативной конформацией гомологичного белка, установленной экспериментально. Включение информации о белковых семействах ведет к увеличению показателя качества Q3 до 70,8%, что соответствует точности экспериментального определения вторичных структур с помощью спектров КД. Однако в развитом Ростом и Сандером методе упрощение проблемы предсказания вторичных (ГГруктур и на их основе третичной столь велико и бесконтрольно, что грани между благими желаниями авторов, субъективным восприятием полученных результатов и декларируемыми количественными показателями точности становятся неразличимы. [c.519]


Смотреть страницы где упоминается термин Третичная конформация: [c.322]    [c.221]    [c.237]    [c.45]    [c.193]    [c.361]    [c.221]    [c.464]    [c.360]    [c.51]    [c.364]    [c.53]    [c.135]    [c.507]   
Общая микробиология (1987) -- [ c.43 , c.204 , c.436 , c.442 ]




ПОИСК







© 2024 chem21.info Реклама на сайте