Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метильная группа

    Если в молекуле уксусной кислоты некоторые атомы водорода метильной группы заменить атомами галогенов, то кислота станет намного сильнее. Например, если все три атома водорода замещены атомами хлора, получающаяся трихлоруксусная кислота примерно в пять ты- [c.156]

    А что, если присоединить к бензольному кольцу две метильные группы Здесь уже появляется возможность для изомерии, потому что их можно присоединить тремя разными способами. Это очень просто продемонстрировать вам, если к бензольному кольцу добавить черточки, означающие метильные группы  [c.59]


    Однако в наше время гораздо более важную роль играет другой хинон— витамин К- Его молекула построена на основе нафтохинона — пара-хинона, к которому бензольное кольцо пристроено только с одной стороны. А к другой стороне молекулы нафтохинона в витамине К присоединены метильная группа и длинная боковая цепь из 20 атомов углерода. [c.131]

    Исходя из этих опытных данных и уточненных значений выходов, можно определить, что замещение водородных атомов различного типа в рассмотренных выше парафиновых углеводородах всегда протекает в газовой фазе при 300° в соотношении первичный вторичный третичный, равном 1 3,25 4,43. Следовательно, если первичный водород метильной группы реагирует со скоростью, условно принимаемой за единицу, то вторичный водородный атом метиленовой группы замещается со скоростью 3,25, а третичный водородный атом метиновой группы со скоростью 4,43. [c.199]

    Когда обе свободные валентные связи углеродного атома карбонильной группы присоединены к другим углеродным атомам, получается кетон. Самый простой кетонов—ацетон, в молекуле которого обе связи карбонильной группы присоединены к метильным группам  [c.126]

    Боковая цепь в этом соединении состоит из атома углерода и присоединенных к нему трех атомов водорода. Другими словами, это не что иное, как молекула метана без одного водородного атома. Такая группировка называется метильной группой, а соединение, состоящее из [c.58]

    Скорости замещения первичного, вторичного и третичного атомов водорода в случае газофазного хлорирования низших парафиновых углеводородов при 300° или в случае жидкофазного хлорирования при 30" относятся между собой приблизительно как 1 3,25 4,43. Следовательно, если принять относительную скорость замещения первичного атома водорода метильной группы за единицу, то вторичный атом водорода метиленовой группы реагирует в 3,25 раза, а третичный атом водорода метиновой группы в 4,43 раза быстрее. [c.555]

    Всякое вещество, молекула которого состоит из бензольного кольца и двух метильных групп, называется ксилолом. Но чтобы показать, как именно в нем расположены метильные группы, к этому названию прибавляют определенные приставки. Например, если метильные группы присоединены к соседним атомам углерода, получается орто-ксилол если они расположены на противоположных концах кольца — пара-ксилол, а если имеют промежуточное расположение — мета-ксилол. Иногда, для экономии места, эти приставки сокращают и пишут так о-ксилол, л-ксилол и л -ксилол. [c.59]

    Женевская номенклатура предусматривает специальные правила нумерации атомов в цепях и кольцах. Например, название 20-метилхолантрен означает, что метильная группа присоединена к двадцатому по счету атому углерода. Конечно, для того чтобы представить себе формулу по такому названию, нужно хорошо знать правила нумерации честно говоря, я видел, как в них путаются даже самые опытные химики. В этой книге касаться номеров мы почти не будем. [c.63]


    Карбоксильная группа может быть соединена и с атомом углерода. Если он при этом входит в состав метильной группы, то получается вот что  [c.155]

    Есть еще одно важное соединение, подобное фенолу,— крезол. Это фенол, в молекуле которого к бензольному кольцу присоединена еще и метильная группа. Он обладает более сильным антисептическим действием, чем фенол, дещевле и проще в обращении. Крезол или дру- [c.110]

    Поскольку в его состав входит метильная группа, он называется метиловым спиртом. [c.85]

    Есть еще одна возможность приблизить отношение скоростей замещения первичного и вторичного атомов водорода к единице. Она заключается в проведении газофазного хлорирования под давлением, так как повышение последнего благоприятствует замещению водорода метильных групп. В то время как при 300° и нормальном давлении скорости замещения хлором первичного и вторичного атомов водорода пропана относятся как 1 3,25, повышение давления до 70 ат увеличивает это отношение до 1 2,6 [41]. При 240° и нормальном давлении указанные скорости замещения относятся как 1 3,6 если давление повысить до 240 ат, отношение скоростей увеличивается до 1 2,65. Такое повышение давления увеличивает содержание первичного хлорида в продуктах реакции от 45 до 54%. Аналогичный результат получается, если при нормальном давлении температуру повысить от 240 до 475°. [c.547]

    При обычном электрохимическом механизме, как правило, восстанавливаются частицы, адсорбированные на электроде и потерявшие часть степеней свободы, которыми они обладали в растворе. В связи с этим здесь существенную роль могут играть стерические факторы. При восстановлении сольватированными электронами восстанавливаемые частицы находятся в объеме раствора и стерические затруднения проявляются в меньшей мере. Найдено, например, что 2,3-де-метил-2-бутен, в котором двойная связь экранирована метильными группами, создающими стерические затруднения, восстанавливается сольватированными электронами в смеси гексаметилфосфотриамида и этанола почти столь же легко, как и циклические олефины. Отмечено также, что при восстановлении сольватированными электронами стереохимия продуктов восстановления иная, чем при электрокаталитическом гидрировании. [c.445]

    Еще сильнее действует хлораль, молекула которого похожа на молекулу ацетальдегида с той только разницей, что все три водородных атома метильной группы замещены атомами хлора. Когда хлораль растворяется в воде, к каждой его молекуле присоединяется по молекуле воды, и получается хлоральгидрат. Он усыпляет больных еще быстрее, чем паральдегид. [c.124]

    Ни уксусная, ни пропионовая, ни масляная кислоты не были обнаружены. Отсутствие уксусной кислоты показало, что хлор вступил в реакцию по метильной группе в количестве, эквивалентном найденной муравьиной кислоте. Однако присутствие кислот с более чем шестью атомами углерода говорило за то, что замещение произошло также и при шестом атоме углерода. Уже по чисто статистическим соображениям невероятно, чтобы при наличии 28 метиленовых групп в метильную труппу вступило бы 28% хлора и чтобы замещение в положениях [c.540]

    Как известно, метаксилол сульфируется легче, чем орто-и параксилолы, так как в нем ориентирующее действие ме-тильных групп усиливает тенденцию введения сульфогрупп, в то время как расположение метильных групп в орто- и параположении частично затрудняет сульфирование орто- и параксилолов. [c.23]

    Хотя Михаэль однозначно показал, по крайней мере качественно, что при бромировании и хлорировании н-гексана образуются все три теоретически возможных изомера, до последнего времени все же продолжал господствовать взгляд, что хлор замещает главным образом нодород метильной группы, да еще, пожалуй, водород у второго атома углерода. Шорлеммер считал это уже доказанным. [c.539]

    На основании этих цифр было рассчитано точное содержание в смеси каждого изомера при этом считали, что если за определенное время реагирует 1 атом водорода метильных групп, то за то же время прореагируют 3,25 атома водорода метиленовых и 4,43 атома водорода метиновых групп. Сопоставление расчетных данных с полученными экспериментальным путем приведено в табл. 140. [c.545]

    При хлорировании высокомолекулярных парафиновых углеводородов хлор распределяется статистически по всей углеродной цепи, потому что вторичные водородные атомы отдельных метиленовых групп реагируют с одинаковой относительной скоростью. Только на концах парафиновой углеводородной молекулы замещение ограничено, так как относительная скорость реакции первичных водородных атомов метильных групп примерно в 3 раза меньше, чем вторичных водородных атомов метиленовых групп. При хлорировании к-додекана образуется приблизительно 8,5 % мол. 1-хлордодекана и по 18,3 % мол. 2-, 3-, 1 4-, 5-, и 6-хлордодекана. Чем длиннее парафиновая цепь, тем относительно меньше содержится в смеси хлорпарафина первичного хлорида. Принимая во внимание, что первичные хлориды отдают свой хлор в реакциях посредством двойного обмена, в то время как вторичные в большей части претерпевают дегидрохлорирование, это имеет особо важное практическое значение [111. [c.116]

    Напротив, те галоидные алкилы, в которых атом галоида связан с углеродом, расположенным между метиленовой и метильной группами, будут вести себя, по-видимому, по-иному. Здесь водород отщепляется преимущественно от метиленовой группы. [c.551]


    Согласно еще не опубликованным данным в случае сульфоокисления наблюдаются те же реакции и явления, что и при хлорировании, нитровании или сульфохлорировании. Здесь также образуются все теоретически возможные первичные и вторичные продукты замещения. Вторичные изомеры получаются в эквимолярных количествах, а сульфоокисление метильной группы происходит в меньшем объеме. Отношение скоростей замещения первичного и вторичного атомов водорода равняется, как и прежде, 1 3,25. [c.579]

    Эта приблизительная равноценность метиленовых групп была заранее очевидна, ибо нет ни малейших оснований полагать (не считая влияния метильных групп), что какая-нибудь метиленовая группа длин- [c.582]

    Я уже говорил, что молекула метана без одного атома водорода называется метильной группой. То же самое относится и к любому углеводороду. Этан без одного атома водорода называется этильной группой. Точно так же образуются пролильная группа, бу-тильная, изобутильная и так далее. [c.72]

    Однако полное название может сообщить нам кое-что такое, о чем не может сказать сокращенное. Из него становится ясно, как выглядит молекула. Прежде всего, оно кончается на метилметан — это значит, что нужно начать с молекулы метана и присоединить к ней метильную группу. Трихлор означает, что три атома водорода в этой молекуле должны быть замещены на хлор. Дальше из названия следует, что еще два атома водорода замещены на хлорфенильные группы, т. е. на бензольные кольца, в каждом из которых недостает по одному атому водорода и еще один из атомов водорода замещен на хлор. Вот и все.  [c.75]

    Для технических целей наиболее нодходяш,им исходным материалом может служить гидрированный при высоком давлении когазин II синтеза Фишера-Тропша с кобальтовым катализатором. Гидрирование проводится примерно при 320° и 200 ат давления водорода над сульфидным никель-вольфрамовым катализатором. При этом получают с 99%-ным выходом смесь бесцветных вполне насыщенных углеводородов, очень мало разветвленных, так называемые меназины. При сульфохлорировании получается смесь всех теоретически возможных моносульфохлорпдов. Если в качестве исходного материала применяется смесь парафиновых углеводородов с прямой цепью и четным числом углеродных атомов в цени, то образуется равное количество всех возможных вторичных сульфохлоридов, так как сульфохлорирование любой из метиленовых групп одинаково вероятно. Первичных сульфохлоридов получается очень мало, во-первых, потому, что реакционная способность водородных атомов метильных групп меньше, чем водородных атомов метиленовых групп, а во-вторых, потому, что с увеличением длины молекулы парафиновых углеводородов число метиленовых групп значительно увеличивается. [c.138]

    Азотнар кислота нри окислении переходит частью в окись азота, частью в закись азота и элементарный азот. Первая метильная группа и-ксилола тоже окисляется значительно легче, чем вторая. [c.267]

    Аналогично 1-хлор-2-метилбутан разлагается, образуя изопропил-этилен (т. кип. 20°). В результате повторного присоединения хлористого водорода изопропилэтилен превращается главным образом в 3-хлор-2-мети1лбутан (в этом проявляется тендендия к образованию метильных групп). [c.179]

    Ка можно показать экспериментально (см. главу IX Закономерности реакций замещения парафиновых углеводородов ), при монохлорировании высокомолекулярных парафиновых углеводородов все теоретически возможные вторичные монозамещенные продукты образуются в приблизительно эквимолекулярных соотношениях следовательно, замещающая группа распределяется приблизительно равномерно между всеми молекулами. Только замещение концевых метильных групп протекает относительно несколько слабее. [c.199]

    Так как и здесь вторичный водородный атом примерно в 3,2 раза быстрее замещается, чем первичный, то при сульфохлорировании, например, н-додекана образуется приблизительно 8,5% мол. додекан-сульфохлорида с замещелием водорода у концевых метильных групп молекулы, в то время ак три,мерно по 18,3% -мол. ЗОгС —групп становится у углеродных атомов 2, 3, 4, 5 и 6. [c.380]

    Жирные кислоты изостроения, присутствующие в продуктах окисления парафина, уже значительно труднее выделить в чистом виде. При фракционировании метиловых эфиров жирных кислот, которые были предварительно освобождены от других кислородных соединений, кислоты изостроения накапливаются в цромежуточных фракциях. Омылением и многократной перекристаллизацией можно выделить чистые кислоты (Б. Вайс). Они обладают неприятным запахом и присутствуют в значительных количествах в жирных кислотах, полученных окислением парафина ТТН и парафина Рибек, их содержится приблизительно 12%, а в кислотах, имеющих своим источником синтетический парафиновый гач, их значительно больше (до 30%). Можно с достаточной вероятностью установить присутствие в структуре этих кислот метильных групп в и у-положениях, и возможно, что они имеются также в других положениях (Б. Вайс, Г. Мелап). В головных погонах жирных кислот также установлено наличие кислот изострое-ния. Кислоты, не обработанные силикагелем, содержат дикарбоновые кислоты с 9—16 атомами углерода (Бем).  [c.464]

    Лангенбек и Притцков [81] установили факт, не согласующийся со схемой Рихе. Они нашли, что первичные спирты в условиях, при которых проводят окисление парафинов, окисляются преимущественно не в гомологичные жирные кислоты, а по метиленовым и метильным группам углеродного скелета, что приводит к образованию карбоновых кислот и оксикислот. [c.466]

    При сульфоокислении парафиновых углеводородов, как и при хлорировании, нитровании или сульфохлорировании, распределение заместителей происходит равномерно по всей цепи. Отдельные теоретичест ожидаемые изомеры продуктов монозамещения образуются почти в зквимолярном соотношении. Лишь замещение в концевых метильных группах проходит в меньшей степени, потому что по отношению к сульфоокислению первичный атом водорода метильной группы также реагирует значительно медленнее, чем (Вторичный атом водорода метиленовой группы (подробнее см. главу Закономерность реакций замещения парафиновых углеводородов , стр. 579). [c.501]

    Уже давно стремятся выяснить закономерности замещения водорода хлором в парафиновых углеводородах. При этом почти всегда изучали хлорирование гексана, получаемого из нефти или восстановлением маннита, и гептана, извлекаемого из нефти или масла Pinos sabiniana. Вначале думали, что хлор атакует только конец углеводородной молекулы, т. е. что замещение происходит исключительно в метильной группе. Позднее было твердо установлено, что замещается также водород у второго углеродного атома. Возможным считалось образование и других монохлоралканов, однако, поскольку экспериментальные подтверждения отсутствовали, этот взгляд был отвергнут. С другой стороны, первоначально существовало мнение, что в случае бромирования парафина продукты замещения у первичного атома углерода не образуются, а получаются исключительно вторичные бромиды. [c.533]

    Отсюда вытекает, что первичный атом водорода метильной группы реагирует при дегидрохлорировании более вяло, чем вторичный атом водорода метиленовой группы, Если, напротив, соединенный с галоидом атом углерода находится между двумя метиленовыми группами (— H2 H I H2—), то при прочих равных условиях олефин может образоваться легче, чем при группировке — H2 H I H3. В первом случае галоид находит у соседних атомов углерода равноценные по реакционной способности атомы водорода метиленовых групп во втором случае хотя и имеется больше атомов водорода, которые могут отщепиться, но из них первичные атомы менее активны. [c.538]

    Так, Шульц [24] указывает, что он характеризовал н-декан, обнаруженный им в каменноугольной смоле, тем, что перевел его хлорированием в спирт и затем в каприновую кислоту. При этом он ни слова не упоминает о выходах, так что могло бы сложиться мнение, что хлО рируется метильная группа и образуется 1-хлордекан. [c.539]

    Итак, при хлорировании высших нормальных парафиновых углеводородов образуются эквимолярные смеси всех теоретически возможных вторичных монохлорндов, т. е. заместитель распределяется равномерно по всем метиленовым группам. В конечную метильную группу заместитель входит в меньшей степени, чем в метиленовую, следовательно, реакционная способность первичного атома водорода понижена. В атом случае опять скорости замещения первичного и вторичного атомов водорода относятся почти как 1 3. [c.553]

    Все попытки направить процесс хлорирования в сторону большего образования первичных хлоридов путем использования различных катализаторов или изменения температуры не увенчались до настоящего времени успехом. Эти факторы практически не оказывают существенного влияния иа р1аспределение изомеров, так как реакционные способности метиленовых групп не меняются относительно друг друга, а удельный вес метильных групп настолько мал по сравнению с метиленовыми, что воз.можное изменение отношения скоростей замещения в пользу первичных атомов водорода не может себя проявить. [c.554]

    При сульфохлорировании высших парафиновых углеводородов, таких, как н-додекана или н-гексадекана, проявляются те же закономерности, что и при хлорировании и нитровании этих углеводородов. В соответствии с этим сульфохлоридные заместители распределяются равномерно по всем метиленовым группам замещение в метильной группе происходит в меньшей степени, чем в каждой из метиленовых групп. Принимается, что отношение скоростей замещения первичного и вторичного атомов водорода при сульфохлорировании высших парафинов также равно 1 3,25, как это было подтверждено для низших углеводородов (при помощи экспериментальной методики, выбранной для изучения состава продуктов сульфохлорирования высших парафинов, это отношение нельзя точно определить). Следовательно, в случае н-додекана получается, что с каждым атомом углерода в положениях 2, 3, 4, 5 и 6 связано по 18,3% мол. ЗОаС , в то время как первичного додекансульфохлорида имеется всего 8,57о мол. Однако при таком молекулярном весе это отношение нельзя точно определить по приведенной ранее экспериментальной методике. Здесь также следует учитывать лишь поочовину молекулы, так как замещения в положегшя [c.577]

    В 1934 г. к изучению этой проблемы приступил американец Баруэлл [109], исследовавший воздействие кислорода на углеводородную цепь. При этом, как он указывает, протекают следующие процессы. Метильная группа ни в коем случае не вступает в реакцию. Вначао Ш о-кисляется метиленовая группа, находящаяся в -положении. По мере прогрессирования реакции окислению подвергается у-метиленовая группа, а затем подвергаются другие, расположенные ближе к серед Ше цепочки. Количества образовавшихся муравьиной и уксусной кислот доходят до 10—15%. Муравьиная кислота получается в большем количестве, следовательно, превращение в муравьиную кислоту происходит чаще, чем в другие кислоты. [c.581]

    В самое последнее время [123а] проблемой направления окислительного действия кислорода при окислении н-парафинов занялся Лейбниц с сотрудниками. Они защищают мнение, что кислород присоединяется преи мущественно к первичному атому углерода, т, е. к метильной группе. Вскоре лосле этого Притцков на примере н-гептана показал, что если окисление проводить в условиях, при которых не появляется заметных количеств жирных кислот, а в основном образуются кетон1,1 и спирты с тем же числом атомов углерода, что и исходный парафин, направление действия кислорода подчиняется законам статистического распределения [123 б]. [c.588]

    Адамс и Яннингс [79] проводили опыты с дейтерированным пропиленом, который они окисляли в акролеин па окиси меди (I) и кго-лнбдате висдгута. Механизм окисления пропилена одинаков для обоих катализаторов. Водород или дейтерий отщепляли от метильной группы н затем еще раз удаляли водород пли дейтерий от одного из концов. Тем не менее осталось неясно, по какому механизму происходит присоединение. [c.94]

    Можно было предположить, что бензол ис был обнаружен, так как труднее сульфируется, чем толуол, в котором существование метильной группы способствует подвижности водорода ароматического ядра в параположенпн и делает его реакиионноспособным. Действие серной кислоты на бензол и толуол было изучено Таилнчссвым. Было замечено, что для полного удаления толуола достаточна 94%-ная серная кислота, а для полного удаления бензола - - 97%-ная. Нами же была взята 100%-пая серная кислота, которая обладает способностью лучше выделить бензол. Если во фракции 70 — 95 С был обнаружен толуол, где его количество равно 6,22 %, то, естественно, что в его основной фракции 95—122°С содержится сравнительно большее количество толуола. [c.22]

    Исследование выделенных н-алкапов методом газо-жид-костной хроматографии показало (табл. 1), что синтетические цеолиты удаляют, правда в малом количестве, и алканы изо-строепия, в том числе малоразветвленные, у которых метильная группа находится у предпоследнего углеводородного атома. Такие углеводороды своей прямой цепочкой могут войти в поры синтетического цеолита, т. е. эта часть молекулы углеводорода может вести себя как алкан нормального строения. [c.199]


Смотреть страницы где упоминается термин Метильная группа: [c.59]    [c.554]    [c.556]    [c.560]    [c.590]    [c.593]    [c.191]   
Химия (1978) -- [ c.185 ]

Синтетические методы органической химии (1982) -- [ c.113 , c.173 , c.254 ]

Химия и технология химико-фармацевтических препаратов (1954) -- [ c.19 , c.21 ]

Химия азокрасителей (1960) -- [ c.0 ]

Определение строения органических соединений (2006) -- [ c.78 , c.80 , c.168 ]




ПОИСК





Смотрите так же термины и статьи:

Аденозилметионин, переносчик метильных групп

Анализ числа метильных групп

Ангулярная метильная группа

Ангулярная метильная группа в стероидах, потеря

Бетаин, перенос метильных групп

Бициклические кетоны с ангулярной метильной группой у у-углеродного атома

Бутадиен влияние замещения метильными группами а его полимеризацию

Взаимодействие с веществами, содержащими активные метильные группы

Витамин В как переносчик метильных групп

Влияние пиридина на резонансные сигналы метильных групп

Деформационные колебания метильных групп, присоединенных к неуглеродным атомам

Диметилсульфат обмен метильных групп

Иодиды, летучие, метод определения метильных групп

Использование положений резонансных сигналов ангулярных метильных групп

Конденсация ортоэфиров с соединениями, содержащими активную метильную, метиленовую или метинную группы

Метилацетат обмен метильной группы

Метиловый спирт как предшественник метильной группы

Метильная группа в пектиновых

Метильная группа в пектиновых веществах

Метильная группа в сахарах

Метильная группа в стероидах

Метильная группа влияние на спектры

Метильная группа отщепление

Метильная группа перенос

Метильная группа сочетание

Метильная группа стабилизирующее влияние

Метильная группа стерическое благоприятствование

Метильная группа, индуктивный эффект

Метильная группа, определени

Метильная группа, ориентирующее действие

Метильные группы макроопределение

Метильные группы микроопределение

Метильные группы, ЯМР-спектроскопия

Метильные группы, обнаружение

Метильные группы, окисление

Метильные группы, окисление Метилэтилбензол

Метильные группы, определение

Метильные группы, расположенные рядом с карбонильной группой

Метильных групп доноры

Молекулярная текучесть, влияние метильных групп

Мостиковые метильные группы

Обмен атомных групп метильных

Окисление активированных метильных и метиленовых групп в карбонильных соединениях

Окисление активированных метильных и метиленовых групп в олефинах

Окисление метильных групп двуокисью селена

Окисление метильных и метиленовых групп

Окисление подвижных метильных групп

Определение алкоксильных и N-метильных групп

Определение ацетильной и бензоильной групп, а также метильной группы, связанной с углеродом

Определение концевых метильных групп

Определение метильной группы связанной с углеродом, а также этоксильной группы

Определение метильных групп, связанных с углеродом

Перенос метильной группы тетинов под действием ферментов

Пиролиз ароматических кетонов с о-метильной группой

Подвижные метильные группы

Полиамиды влияние метильных групп на способность к волокнообразованию

Полиамиды метильной группы

Полимеризация бутадиенов, влияние метильных групп

Полиэфиры влияние метильных групп па способность к волокнообразованию

Положения, занимаемые метильными группами

Пример 43. Микроопределение метильной боковой группы окислением хромовой кислотой

Протоны метильных групп

Растворителя влияние на метильные группы

Реакции азосочетания с соединениями, содержащими подвижные водородные атомы в метиленовых и метильных группах

Реакции переноса метильной группы

Реакционная способность метильных групп в положениях

Резонансные сигналы других С-метильных групп

Синтез лабильной метильной группы в организме

Совместное определение метоксильных и N-метильных -Л групп

Сравнение связи металла с метильной группой и с галогеном

Триметиламин обмен метильных групп с метилиодидом

Фолиевая в образовании метильных групп

Химические реакции метильные группы

Циангруппа из метильной группы

Этиловый эфир акриловой кислоты влияние метильной группы

алкил оксинафтохинонов метильной группы

ацильные производные содержания метильных групп

диметил бромирование по метильной группе, региоселективность

диметил депротонирование метильной группы

диметил этил этоксикарбонил селективное окисление метильной групп

идролиз метильной группой

метил депротонирование метильной группы

метил реакции по метильной групп

также Кобаламин образовании метильных групп



© 2025 chem21.info Реклама на сайте